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Abstract: Global dynamic results are obtained for families of competitive systems of difference
equations of the form xn+1 = b1xn

α1+xn+c1yn
, yn+1 = b2yn

α2+c2xn+yn
n = 0, 1, . . . , where the parameters

b1, b2 are positive numbers, and α1, α2, c1, and c2 and the initial conditions x0 and y0 are arbitrary
non-negative numbers, when one or both of αi, i = 1, 2 equalls 0. We assume that the denominators
of both equations are always positive. We will show that the presence of more parameters will create
more dynamic scenarios.

Keywords: competitive; competitive exclusion; global stable manifold; map; monotonicity;
period-two solution; unstable manifold

1. Introduction

The system of difference equations,

xn+1 =
b1xn

α1 + xn + c1yn
, yn+1 =

b2yn

α2 + c2xn + yn
n = 0, 1, . . . , (1)

where the parameters b1, b2 are positive real numbers, and α1, α2, c1, and c2 and the initial conditions x0

and y0 are arbitrary non-negative numbers, is considered as a major discrete model that describes the
competition of two species, see [1–7]. In this paper we consider the effect of terms α1, α2 on the global
dynamics of system (1). The global dynamics of (1) was considered in the case where the parameters
α1, α2 are positive in [1–3,5] and the complete description of the dynamics was given in [5] where the
following result was obtained:

Assuming, without loss of generality, that α1 = α2 = 1, it has been shown in [1] that under the
condition b1 > 1 and b2 > 1, the points

E0(0, 0), Ex(b1 − 1, 0), Ey(0, b2 − 1)

are equilibria of Equation (1), and that for some values of the parameters there exists an additional
equilibrium point E3 located in the open positive quadrant, given by

E
(

b2 − 1
c1c2 − 1

(
c1 −

b1 − 1
b2 − 1

)
,

b1 − 1
c1c2 − 1

(
c2 −

b2 − 1
b1 − 1

))
. (2)

Important subsets of parameter space are described in Table 1, together with corresponding
behavior of equilibrium solutions established in [1].
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Table 1. Global behavior of solutions to Equation (1) when b1 > 1 and b2 > 1. Equality relations are
not represented for the sake of a simpler description.

Condition c1(b2 − 1) < b1 − 1 c1(b2 − 1) > b1 − 1

c2(b1 − 1) < b2 − 1

Case 1.
E0 is a repeller
Ex is a saddle
Ey is a saddle
E is an interior local attractor.

Case 2.
E0 is a repeller
Ex is a saddle
Ey attractor on [0, ∞)× (0, ∞)
No interior fixed point exists.

c2(b1 − 1) > b2 − 1

Case 3.
E0 is a repeller
Ex is attractor on (0, ∞)× [0, ∞)
Ey is a saddle
No interior fixed point exists.

Case 4.
E0 is a repeller
Ex is a local attractor
Ey is a local attractor
E is an interior saddle.

Theorem 4.1 in [5] applies when parameters vary from Case 1 to Case 4 of Table 1. Set

A = {a ∈ R4
+ : a = (b1, b2, c1, c2) and c1(b2 − 1) > b1 − 1 > 0}

and define Ta to be the map of Equation (1) restricted toR = [0, ∞)× (0, ∞), that is,

Ta(x, y) =
(

b1x
1 + x + c1y

,
b2y

1 + c2x + y

)
.

Therefore, Theorem 4.1 in [5] gives global behavior of solutions to system (1) on R = [0, ∞)×
(0, ∞) for a ∈ A. In particular, a bifurcation occurs when the equilibrium E changes its local character
from a locally stable equilibrium to a saddle point. This happens when the parameters cross the critical
surface Γ(b1, b2, c1, c2) = c2(b1 − 1)− b2 + 1 = 0.

It is also shown in [1] that the open, positive semiaxis (0, ∞)× {0} is attracted to Ex, and that the
open, positive semiaxis {0} × (0, ∞) is attracted to Ey. The following two results describe the global
dynamics of system (1) in all cases. The first result gives the global dynamics in the hyperbolic case
and the second result in the non-hyperbolic case.

Theorem 1. Consider system (1).

(i) Suppose that c1 (b2− 1) > b1− 1 > 0. If c2 (b1− 1) > b2− 1, then Ey is globally asymptotically stable
on [0, ∞)× (0, ∞), and Ex attracts all points on the open semiaxis (0, ∞)×{0}. If c2 (b1− 1) < b2− 1,
then the stable manifold Ws(E) in [0, ∞)× [0, ∞) is the graph of a continuous, increasing function
of the first coordinate. Furthermore, a solution {xn} converges to Ex whenever x0 is above Ws(E) in
South-east ordering, and {xn} converges to Ey whenever x0 is below Ws(E) in South-east ordering.

(ii) Suppose that c1 (b2− 1) < b1− 1 > 0. If c2 (b1− 1) > b2− 1, then Ex is globally asymptotically stable
on [0, ∞)× (0, ∞), and Ey attracts all points on the open semiaxis {0}× (0, ∞). If c2 (b1− 1) < b2− 1,
then E is globally asymptotically stable on (0, ∞)× (0, ∞), Ey attracts all points on the open semiaxis
{0} × (0, ∞), and Ex attracts all points on the open semiaxis (0, ∞)× {0}.

See Figure 1 for graphical interpretation.
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Figure 1. Global dynamics of System (1).

The non-hyperbolic case when

c1 (b2 − 1) = b1 − 1 and c2 (b1 − 1) = b2 − 1 (3)

was not considered in [1]. When (3) holds, a direct calculation gives that the fixed points of Ta are
E0(0, 0) and all points on the segment E := {Et : 0 ≤ t ≤ 1 }, where

Et := ((b1 − 1) (1− t), (b2 − 1) t) , 0 ≤ t ≤ 1.

The eigenvalues of the Jacobian of Ta at Et are

λ1 = 1 and λ2 = (1− t)
1
b1

+ t
1
b2

, 0 ≤ t ≤ 1 ,

and corresponding eigenvectors are

e1 =

(
−1− b1

1− b2
, 1
)

and e2 =
(

b2 (1− b1)
2 (1− t) , b1 (1− b2)

2 t
)

, 0 ≤ t ≤ 1.

It is shown in [8] that, for system (1), the hypotheses of Theorem 5 in [6] are satisfied and that all
solutions fall inside an invariant rectangular region. Therefore, every solution of (1) converges to
an equilibrium point. A direct calculation shows that the origin is a repeller. We conclude that
every nonzero solution converges to a point (x, y) ∈ E . Also, with an argument similar to the one
used in [9], one has that the equilibrium depends continuously on the initial condition. That is,
if T∗(x, y) := lim Tn

a (x, y), then T∗ is continuous. These observations, together with an application of
Theorem 1 in [6] lead to the following result.
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Theorem 2. Assume (3) holds. Then,

(i) Every nonzero solution to system (1) converges to an equlibrium (x, y) ∈ E .
(ii) For every (x, y) ∈ E with x 6= 0 and y 6= 0, the stable set Ws

(x,y) is an unbounded, increasing curve C
with endpoint (0, 0).

(iii) The limiting equilibrium varies continuously with the initial condition.

See Figure 1 for graphical interpretation.

Statement (ii) excludes equilibria of the form (0, y) and (x, 0) since the hypotheses of Theorem 1
in [6] are not satisfied at these points.

In this paper, we consider two related systems, namely

xn+1 =
b1xn

xn + c1yn
, yn+1 =

b2yn

c2xn + yn
n = 0, 1, . . . (4)

and
xn+1 =

b1xn

α1 + xn + c1yn
, yn+1 =

b2yn

c2xn + yn
n = 0, 1, . . . , (5)

where all present coefficients are positive and the initial conditions are non-negative and such that
x0 + y0 > 0. We derive the global dynamics of both systems (4) and (5), which explains the effect of
the coefficients α1, α2 on the global dynamics. Related systems are considered in [2,3,10–12].

The paper is organized as follows. Section 2 presents some basic preliminary results about
competitive systems, which is our main tool in proving the results. Section 3 contains the global
dynamics of system (4) and Section 4 gives the global dynamics of system (5). Actually we show
that the global dynamics of all three systems is determined by their linearized dynamics. We use
different techniques to prove the results for systems (4) and (5). In particular, we will use the fact
that system (4) is homogeneous to obtain the exact equation of the global stable manifold of positive
equilibrium solution of system (4). We will show that the presence of more parameters will create more
dynamic scenarios in such a way that system (1) exhibits one additional dynamic scenario compared
to system (5) which in turn will have one additional dynamic scenario more than system (4). This is in
contrast with the global dynamics of second order difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
. n = 0, 1, . . . ,

with all non-negative parameters and initial conditions such that A + Bxn + Cxn−1 > 0, n = 0, 1, . . .,
where the most complicated dynamics occurs in the special case of Lyness’ equation when γ = A =

B = 0 [13]. We will also show that systems (1) and (4) are solvable for the special values of parameters
while there is not a formula for the exact solution of system (5) at this time for any choice of parameters.

2. Preliminaries

In this section we provide some basic facts about competitive maps and systems of difference
equations in the plane.

Definition 1. Let R be a subset of R2 with nonempty interior, and let T : R→ R be a map (i.e., a continuous
function). Set T(x, y) = ( f (x, y), g(x, y)). The map T is competitive if f (x, y) is non-decreasing in x
and non-increasing in y, and g(x, y) is non-increasing in x and non-decreasing in y. If both f and g are
non-decreasing in x and y, we say that T is cooperative. If T is competitive (cooperative), the associated system
of difference equations {

xn+1 = f (xn, yn)

yn+1 = g(xn, yn)
, n = 0, 1, 2, . . . , (x−1, x0) ∈ R (6)
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is said to be competitive (cooperative). The map T and associated difference equations system are said to be
strongly competitive (strongly cooperative) if the adjectives non-decreasing and non-increasing are replaced
by increasing and decreasing.

If T is differentiable, a sufficient condition for T to be strongly competitive is that the Jacobian
matrix of T at any x ∈ R has the sign configuration(

+ −
− +

)
.

Competitive systems of the form (6) have been studied by many authors such as Clark,
Hess, Hirsch and Smith, Kulenović, Merino, Nurkanović, Leonard and May, Selgrade, Smale,
Smith [4,6,7,14–19] and others. In [1,2] the authors gave an interesting applications of this theory to
some basic models in population dynamics. Many open problems and conjectures about the dynamics
of competitive systems of linear fractional difference equations are gien in [8].

Denote with �se the South-East partial order in the plane whose non-negative cone is the standard
fourth quadrant {(x, y) : x ≥ 0, y ≤ 0}, that is, (x1, y1) � (x2, y2) if and only if x1 ≤ x2 and y1 ≥ y2.
The North-East partial order �ne is defined analogously with the non-negative cone given by the
standard first quadrant {(x, y) : x ≥ 0, y ≥ 0}.

Competitive maps T in the plane preserve the South-East ordering: T(u) �se T(v) whenever
u �se v. Similarly, cooperative maps in the plane preserve the North-East ordering. In fact, the concepts
of competitive and cooperative (for maps) may be defined in terms of the order preserving properties
of the maps. Thus the theory of competitive maps is a special case of the theory of order preserving
maps (or monotone operators).

Order preserving maps in Rn, and in particular competitive maps in R2, may have chaotic
dynamics. Smale [19] showed that any continuous time vector field on the standard (n− 1)-simplex in
Rn can be embedded on a smooth, competitive vector field in Rn for which the simplex is an attractor.
In the case of a planar system (6), this means that any first order difference equation, including chaotic,
can be embedded into a competitive system (6) in the plane. An effective method to do this is provided
by Smith in [7].

Let � be a partial order on Rn with non-negative cone P. For x, y ∈ Rn the order interval Jx, yK is
the set of all z such that x � z � y. We say x ≺ y if x � y and x 6= y, and x � y if y− x ∈ P◦, where P◦

is the interior of P. A map T on a subset of Rn is order preserving if T(x) � T(y) whenever x ≺ y,
strictly order preserving if T(x) ≺ T(y) whenever x ≺ y, and strongly order preserving if T(x) � T(y)
whenever x ≺ y.

Let T : R→ R be a map with a fixed point x and let R′ be an invariant subset of R that contains x.
We say that x is stable (asymptotically stable) relative to R′ if x is a stable (asymptotically stable) fixed
point of the restriction of T to R′.

Definition 2. Let S be a nonempty subset of R2. A competitive map T : S → S is said to satisfy condition
(O+) if for every x, y in S , T(x) �ne T(y) implies x �ne y, and T is said to satisfy condition (O−) if for every
x, y in S , T(x) �ne T(y) implies y �ne x.

The following theorem was proved by deMottoni-Schiaffino for the Poincaré map of a periodic
competitive Lotka-Volterra system of differential equations. Smith generalized the proof to competitive
and cooperative maps [20,21].

Theorem 3. Let S be a nonempty subset of R2. If T is a competitive map for which (O+) holds then for all
x ∈ S , {Tn(x)} is eventually componentwise monotone. If the orbit of x has compact closure, then it converges
to a fixed point of T. If instead (O−) holds, then for all x ∈ S , {T2n} is eventually componentwise monotone.
If the orbit of x has compact closure in S , then its omega limit set is either a period-two orbit or a fixed point.
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System (5) is an example of what might happen if the orbit of x has no compact closure in S .
The next two results are stated for order-preserving maps on Rn. These results are known but are
given here for completeness. See Theorem 2.1 in [5] and Corollary 1 in [5]. See [15] for a more general
version that is valid in ordered Banach spaces.

Theorem 4. For a nonempty set R ⊂ Rn and � a partial order on Rn, let T : R→ R be an order preserving
map, and let a, b ∈ R be such that a ≺ b and Ja, bK ⊂ R. If a � T(a) and T(b) � b, then Ja, bK is invariant and

i. There exists a fixed point of T in Ja, bK.
ii. If T is strongly order preserving, then there exists a fixed point in Ja, bK which is stable relative to Ja, bK.
iii. If there is only one fixed point in Ja, bK, then it is a global attractor in Ja, bK and therefore asymptotically

stable relative to Ja, bK.

Corollary 1. If the non-negative cone of � is a generalized quadrant in Rn, and if T has no fixed points in
Ju1, u2K other than u1 and u2, then the interior of Ju1, u2K is either a subset of the basin of attraction of u1 or
a subset of the basin of attraction of u2.

Our main tool will be results from [4–6] regarding the existence of the global stable and unstable
manifolds of competitive maps in the plane.

The non-hyperbolic equilibrium solution of system (6) is said to be of stable (resp. unstable) type
if the second eigenvalue of the Jacobian matrix evaluated at the equilibrium solution is by absolute
value less than 1 (resp. bigger than 1).

3. Global Dynamics of System (4)

First we give some basic results about the global behavior of system (4). Denote by

T(x, y) =
(

b1x
x + c1y

,
b2y

c2x + y

)
,

the map associated with system (4). System (4) is homogeneous and was partially investigated in [22].

Lemma 1.

(a) Every solution of system (4) satisfies xn ≤ b1, yn ≤ b2, n ≥ 1.
(b) det JT(x, y) = 0 for every (x, y), where JT denotes the Jacobian matrix of the map T.
(c) T(x0, 0) = Ex(b1, 0), T(0, y0) = Ey(0, b2) for every x0 > 0, y0 > 0.
(d) Every solution of system (4) satisfies the difference equation

rn+1 =
b2

b1
rn

1 + c1rn

c2 + rn
, n ≥ 0,

where rn = yn/xn.
(e) If

(b2 − b1c2)(b1 − b2c1) > 0, (7)

then the map T has an invariant line

`S : y =
b2 − b1c2

b1 − b2c1
x. (8)

Proof. The Jacobian matrix JT of the map T has the form

JT(x, y) =


b1c1y

(x+c1y)2 − b1c1x
(x+c1y)2

− b2c2y
(c2x+y)2

b2c2x
(c2x+y)2

 , (9)
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which implies (b). Parts (a) and (c) follow by immediate checking. Part (d) follows by dividing
equations of system (4). Part (e) follows from (d) since b2−b1c2

b1−b2c1
is exactly an equilibrium of the equation

in (d).

System (4) always has two equilibrium solutions on the axes, Ex(b1, 0), Ey(0, b2). It can also
have either exactly one interior equilibrium solution E or an infinite number of equilibrium solutions
Et. Since the interior equilibrium solution E is an intersection of two equilibrium curves (isoclines)
C1 : x + c1y = b1, C2 : c2x + y = b2 it will exist if either b2

c2
< b1, b1

c1
< b2 (x-intercept of C2 smaller than

x-intercept of C1 and y-intercept of C2 bigger than y-intercept of C1) or b2
c2

> b1, b1
c1

> b2 (x-intercept
of C1 smaller than x-intercept of C2 and y-intercept of C1 bigger than y-intercept of C2). These two
geometrical conditions can be unified as condition (7).

Condition (7) implies that c1c2 6= 1, in which case the interior equilibrium E(x̄, ȳ) is given as:

x̄ =
b1 − b2c1

1− c1c2
, ȳ =

b2 − b1c2

1− c1c2
. (10)

Notice that b2 < b1c2, b1 < b2c1 implies c1c2 > 1 and b2 > b1c2, b1 > b2c1 implies c1c2 < 1.
If either (b2 − b1c2)(b1 − b2c1) < 0, b2 = b1c2 and b1 6= b2c1, or b1 = b2c1 and b2 6= b1c2 then there
are no interior equilibrium points. Furthermore, if b2 = b1c2 and b1 = b2c1, the two equilibrium
curves C1, C2 coincide and every point on the segment x + c1y = b1, x, y ≥ 0 is an equilibrium solution
Et(b1 − c1t, t), t ∈ [0, b2]. See Table 2 summarizing the equilibrium points of system (4).

Table 2. The equilibrium points of system (4).

Condition Equilibrium Points

(b2 − b1c2)(b1 − b2c1) < 0,
b2 = b1c2 and b1 6= b2c1, Ex, Ey

or b2 6= b1c2 and b1 = b2c1

(b2 − b1c2)(b1 − b2c1) > 0 Ex, Ey, E

b2 = b1c2 and b1 = b2c1 Ex, Ey, Et

The following result describes the local stability character of all equilibrium solutions.

Lemma 2. Consider system (4).

(a) The equilibrium solution Ex is locally asymptotically stable if b2 < b1c2, non-hyperbolic of stable type if
b2 = b1c2 and a saddle point if b2 > b1c2. In each case, the eigenvectors associated with the eigenvalues
λ1 = 0 and λ2 = b2

b1c2
are e1 = (1, 0) and e2 = (− b1c1c2

b2
, 1).

(b) The equilibrium solution Ey is locally asymptotically stable if b1 < b2c1, non-hyperbolic of stable type if
b1 = b2c1 and a saddle point if b1 > b2c1. In each case, the eigenvectors associated with the eigenvalues
λ1 = 0 and λ2 = b1

b2c1
are e1 = (0, 1) and e2 = ( b1

c1c2b2
,−1).

(c) The interior equilibrium solution E is a saddle point when b2 < b1c2 and b1 < b2c1 and is locally
asymptotically stable when b2 > b1c2 and b1 > b2c1.

(d) The interior equilibrium solutions Et are non-hyperbolic of the stable type and the eigenvector which
corresponds to λ1 = 0 is given as e1 = (1, y).

Proof.

(a) In view of (9), we have

JT(Ex) =

 0 −c1

0 b2
b1c2

 ,



Mathematics 2019, 7, 76 8 of 17

which implies that the eigenvalues of the Jacobian matrix are λ1 = 0, λ2 = b2
b1c2

.
The corresponding eigenvectors are as stated.

(b) In view of (9), we have

JT(Ey) =


b1

b2c1
0

−c2 0

 ,

which implies that the eigenvalues of the Jacobian matrix are λ1 = 0, λ2 = b1
b2c1

.
The corresponding eigenvectors are as stated.

(c) The eigenvalues of the Jacobian matrix evaluated at the equilibrium E, λ1 = 0 and
λ2 = Tr(JT(E)), correspond to the roots of the characteristic polynomial p(t) = t2 − Tr(JT(E))t.
Note that λ2 > 0 by (9). Furthermore

p(1) =
(b1 − b2c1)(b2 − b1c2)

b1b2(1− c1c2)
and p′(1) =

b2(b1 − b2c1) + b1(b2 − b1c2)

b1b2(1− c1c2)
. (11)

Consequently, if b2 < b1c2 and b1 < b2c1 then p(1) < 0 and p′(1) > 0 and if b2 > b1c2 and
b1 > b2c1 then p(1) > 0 and p′(1) > 0. It follows that E is a saddle point when b2 < b1c2 and
b1 < b2c1 and is locally asymptotically stable when b2 > b1c2 and b1 > b2c1.

(d) In this case, the eigenvalues of the Jacobian matrix evaluated at the equilibrium Et are
λ1 = 0, λ2 = 1. The eigenvector that corresponds to λ1 = 0 is e1 = (1, y), where y > 0 satisfies
x + c1y = b1 and points towards the first quadrant.

Now, global behavior of system (4) is described by the following result:

Theorem 5. Consider system (4).

(a) If b2 < b1c2, b1 < b2c1, then the equilibrium solutions Ex, Ey are locally asymptotically stable and
the interior equilibrium E is a saddle point. The separatrix `S, which is a graph of a continuous,
non-decreasing curve, is the basin of attraction of E and the region below (resp. above) `S is the basin of
attraction of Ex (resp. Ey).

(b) If b2 > b1c2, b1 > b2c1, then the equilibrium solutions Ex, Ey are saddle points and the interior
equilibrium E is locally asymptotically stable. Every solution in the first quadrant which starts off the
coordinate axes converges to E. Every solution which starts on the positive part of the x-axis (resp. y-axis)
is attracted by Ex (resp. Ey).

(c) If b2 < b1c2, b1 > b2c1 (resp. b2 > b1c2, b1 < b2c1), then the equilibrium solution Ex (resp. Ey) is
locally asymptotically stable and Ey (resp. Ex) is a saddle point. The basin of attraction of Ex (resp. Ey)
is the first quadrant of initial conditions without the positive part of the y-axis (resp. x-axis), which is
attracted by Ey (resp. Ex).

(d) If b1 = b2c1 and b2 = b1c2, then there is an infinite family of equilibrium solutions Et, t ∈ [0, b2] for
which there exists the global stable manifoldW s(Et), which is the graph of a continuous, non-decreasing
function asymptotic to (0, 0) and is exactly the basin of attraction of Et. The limiting equilibrium varies
continuously with the initial condition.

(e) If Ex (resp. Ey) is non-hyperbolic and Ey (resp. Ex) is locally asymptotically stable then Ey (resp. Ex)
attracts the first quadrant of initial conditions except the positive part of x-axis (resp. y-axis) which is
attracted by Ex (resp. Ey). If Ex (resp. Ey) is non-hyperbolic and Ey (resp. Ex) is a saddle point then Ex

(resp. Ey) attracts the first quadrant of initial conditions except the positive part of y-axis (resp. x-axis)
which is attracted by Ey (resp. Ex).

See Figure 2 for graphical interpretation.
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Figure 2. Global dynamics of System (4).

Proof.

(a) First we show that T does not have any period-two solutions. Our condition implies c1c2 > 1.
By direct calculation one can show that a period-two solution satisfies the equation

b1c2(c1c2 − 1)x2 + (b1 + b2c1)(b1c2 − b2)x + b1b2(b1 + b2c1) = 0.

Please note that

D = (b1 + b2c1)(b2 + b1c2)(b1c2(b1 − b2c1) + b2c1(b2 − b1c2)− b1b2(c1c2 − 1)) < 0,

which means that both terms of such solution are complex conjugate and so there is no period-two
solution in the first quadrant.

Taking into account that the Jacobian matrix evaluated at E has all non-zero entries, Theorem 5
of [4] implies the existence and uniqueness of both global stable and unstable manifoldsW s(E)
andWu(E) and soW s(E) = `S. Furthermore, Theorem 5 of [4] implies that every (x0, y0) below
`S will satisfy Tn((x0, y0)) ∈ [[E, Ex]] for some n ≥ N. In view of Corollary 1, Tn((x0, y0))→ Ex.
In a similar way, we can treat the case when (x0, y0) is above `S.

(b) In view of Lemma 2 part (a), the eigenvectors which correspond to Ex and Ey point to the
interior of the fourth and the second quadrant, which means that the local unstable manifolds
Wu

loc(Ex) and Wu
loc(Ey) exist and point strictly toward E. Thus there exist points u, v in the

interior of JEy, ExK, arbitrarily close to Ey and Ex such that u �se T(u) �se E �se T(v) �se v.
Now, statement iii of Theorem 3 implies that E is a global attractor in [[u, v]], which completes
the proof.

(c) Assume that b2 < b1c2, b1 > b2c1 which implies that Ex is locally asymptotically stable and Ey is
a saddle point. In view of Lemma 2 part (b), the eigenvector which corresponds to Ey points to
the interior of the fourth quadrant, which means that the local unstable manifoldWu

loc(Ey) exists
and points strictly toward Ex. Thus there exists a point u in the interior of JEy, ExK, arbitrarily
close to Ey such that u �se T(u). However, then this shows that the map T has a lower solution
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in every neighborhood of Ey, which in view of Theorem 6 in [6] implies that the interior of
JEy, ExK is a subset of the basin of attraction of Ex. The result follows.

The proof when b2 > b1c2, b1 < b2c1 is similar and will be omitted.
(d) By Theorem 1 of [6], for each Et there exists the setW s(Et) passing through Et and asymptotic

to (0, 0), which is the graph of a continuous, non-decreasing function, which is exactly the basin
of attraction of Et. The continuity of the limiting equilibrium solution as a function of initial
conditions follows as in [9].

(e) The proof is similar to the proof of part (c) and will be omitted.

Remark 1. In the special case c1 = c2 = 1 system (4) has an explicit solution. Indeed in this case we have that
yn+1
xn+1

= B yn
xn

, where B = b2
b1

and so the solution of system (4) is

xn =
b1x0

x0 + y0Bn−1 , yn =
b1y0Bn

x0 + y0Bn−1 , n = 0, 1, . . . .

Thus B < 1 implies (xn, yn) → (b1, 0), n → ∞ and B > 1 implies (xn, yn) → (0, b2), n → ∞ while B = 1
implies (xn, yn) = ( b1x0

x0+y0
, b1y0

x0+y0
), n = 0, 1, . . ., which is simplified version of possible competitive scenarios,

where the first two are competitive exclusion and the third is competitive coexistence.
In the special case c1 = c2 = 1, α1 = α2 > 0 system (1) is solvable, although the solution formula

is complicated. Using this formula one can similarly explained competitive coexistence and competitive
exclusion scenarios.

4. Global Dynamics of System (5)

In this section, we present the global behavior of system (5). Denote by

T̃(x, y) =
(

b1x
α1 + x + c1y

,
b2y

c2x + y

)
,

the map associated with system (5).

Lemma 3.

(a) Every solution of system (5) satisfies xn < b1, yn ≤ b2, n ≥ 1;
(b) T̃(x, y) satisfies (O+) condition on (0, ∞)2 and so T has no period-two points;
(c) For every y0 > 0, T̃(0, y0) = (0, b2);

(d) For every x0 > 0, T̃n(x0, 0) =

(
b1 − α1

1− ( α1
b1
)n , 0

)
.

Proof. Part (a) and (c) follow by immediate checking and part (d) follows by solving the resulting
Beverton-Holt one-dimensional equation. Notice

T̃

(
x1

y1

)
�ne T̃

(
x2

y2

)
⇔

( b1x1
α1+x1+c1y1

b2y1
c2x1+y1

)
�ne

( b1x2
α1+x2+c1y2

b2y2
c2x2+y2

)
.

This is equivalent to
α1(x1 − x2) ≤ c1(x2y1 − x1y2), x2y1 − x1y2 ≤ 0.

This implies that x1 ≤ x2 and x2y1 ≤ x1y2 and thus x1 ≤ x2, y1 ≤ y2, that is (x1, y1) �ne (x2, y2).

Please note that a direct consequence of the above form of JT̃(x, y) is that T̃ is strongly competitive.
This will play a pivotal role in the global behavior of the system.
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System (5) always has an equilibrium solution on the y-axis, Ey(0, b2). Provided that α1 < b1,
there exists an equilibrium solution on the x-axis, Ex(b1 − α1, 0). Depending on the values of the
parameters α1, b1, b2, c1 and c2, there is also the possibility of either exactly one interior equilibrium
solution E or an infinite number of interior equilibrium solutions Et. The interior equilibrium solution
is an intersection of two equilibrium curves C1 : α1 + x + c1y = b1 and C2 : c2x + y = b2. This solution
will exist if either b2

c2
< b1 − α1 and b2 > b1−α1

c1
(i.e., the x-intercept of C2 is smaller than the x-intercept

of C1 and the y-intercept of C2 is bigger than the y-intercept of C1) or b1 − α1 < b2
c2

and b1−α1
c1

> b2 (i.e.,
the x-intercept of C1 is smaller than the x-intercept of C2 and the y-intercept of C1 is bigger than the
y-intercept of C2). As in (7), these two geometrical conditions can be unified as

∆1∆2 > 0, (12)

where ∆1 = (b2 − c2(b1 − α1)) and ∆2 = (b1 − α1 − b2c1). Condition (12) implies that c1c2 6= 1 and the
interior equilibrium E(x̄, ȳ) is given as:

x̄ =
b1 − α1 − b2c1

1− c1c2
, ȳ =

b2 − c2(b1 − α1)

1− c1c2
.

Please note that if ∆1∆2 < 0, ∆1 = 0 and ∆2 6= 0, or ∆2 = 0 and ∆1 6= 0 then there does not exist
an interior equilibrium solution. Since α1 ≥ b1 implies that ∆1∆2 ≤ 0, we must have α1 < b1 in order
for an interior equilibrium point to exist. Furthermore, if ∆1 = ∆2 = 0 then the two equilibrium curves
C1 and C2 coincide and every point of the segment c2x + y = b2, x, y ≥ 0 is an equilibrium solution
Et(b1 − α1 − c1t, t), t ∈ [0, b2]. The equilibrium points for system (5) are summarized in Table 3.

Table 3. The equilibrium points for system (5).

Condition Equilibrium Points

α1 ≥ b1 Ey

α1 < b1

∆1∆2 < 0,
∆1 = 0, ∆2 6= 0, Ex, Ey
∆1 6= 0, ∆2 = 0

∆1∆2 > 0 Ex, Ey, E
∆1 = ∆2 = 0 Ex, Ey, Et

The local stability character of Ex, Ey, E and Et are presented in Lemma 4. The proof requires
Proposition 1.

Proposition 1. The eigenvalues λ and µ of JT̃(E) are positive.

Proof. In view of (14) we have

JT̃(E) =


b2c1 − b1c1c2 + α1

b1(1− c1c2)
− c1(b1 − b2c1 − α1)

b1(1− c1c2)

− c2(b2 − c2(b1 − α1))

b2(1− c1c2)

c2(b1 − b2c1 − α1)

b2(1− c1c2)

 , (13)

which implies

det(JT̃(E)) =
c2α1(b1 − α1 − b2c1)

b1b2(1− c1c2)
.

Please note that the equilibrium point E exists under the hypothesis ∆1∆2 > 0, which means that
either b2

c2
< b1− α1 and b2 > b1−α1

c1
or b1− α1 < b2

c2
and b1−α1

c1
> b2. In either case, we have det(JT̃(E)) >
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0, and consequently, λ · µ > 0. Since system (5) is strongly competitive, by the Perron-Frobenius
Theorem [15,23], the largest eigenvalue of JT̃(E) is positive, which completes the proof.

Lemma 4. Consider system (5).

(a) The equilibrium solution Ex exists if α1 < b1. It is locally asymptotically stable if b2 < c2(b1 − α1),
non-hyperbolic of stable type if b2 = c2(b1 − α1) and a saddle point if b2 > c2(b1 − α1). In each case,
the eigenvectors associated with the eigenvalues λ1 = α1

b1
and λ2 = b2

c2(b1−α1)
are e1 = (1, 0) and

e2 = ( c1c2(b1−α1)
2

c2α1(b1−α1)−b1b2
, 1), respectively.

(b) The equilibrium solution Ey always exists and it is locally asymptotically stable if b1 < α1 + b2c1,
non-hyperbolic of stable type if b1 = α1 + b2c1 and a saddle point if b1 > α1 + b2c1. In each case,
the eigenvectors associated with the eigenvalues λ1 = 0 and λ2 = b1

b2c1+α1
are e1 = (0, 1) and

e2 = ( b1
c2(α1+b2c1)

,−1), respectively.
(c) The interior equilibrium solution E exists if ∆1∆2 > 0 and it is locally asymptotically stable if

b1 > α1 + b2c1 and b2 > c2(b1 − α1) and a saddle point if b1 < α1 + b2c1 and b2 < c2(b1 − α1).
(d) The interior equilibrium solutions Et exist if α1 < b1, b1 = α1 + b2c1 and b2 = c2(b1 − α1).

They are non-hyperbolic of the stable type and the eigenvector associated with λ1 where |λ1| < 1
is e1 = ( (b1−α1)(b2−t)

b1c2t , 1).

Proof.

(a) The Jacobian matrix associated with the map T̃ has the form

JT̃(x, y) =


b1(α1 + c1y)

(α1 + x + c1y)2 − b1c1x
(α1 + x + c1y)2

− b2c2y
(c2x + y)2

b2c2x
(c2x + y)2

 . (14)

In view of (14), we have

JT̃(Ex) =


α1

b1
− c1(b1 − α1)

b1

0
b2

c2(b1 − α1)

 ,

which implies that the eigenvalues of the Jacobian matrix are λ1 = α1
b1

, λ2 = b2
c2(b1−α1)

.
The corresponding eigenvectors are as stated.

(b) In view of (14), we have

JT̃(Ey) =


b1

α1 + b2c1
0

−c2 0

 ,

which implies that the eigenvalues of the Jacobian matrix are λ1 = 0, λ2 = b1
α1+b2c1

.
The corresponding eigenvectors are as stated.

(c) Denote the eigenvalues of JT̃(E) by λ1 and λ2, which represent the roots of the characteristic
polynomial, p(t) = t2 − TrJT̃(E)t + det JT̃(E). By Proposition 1, λ1 and λ2 are real and
positive. Notice

p(1) = (b1−α1−b2c1)(b2−c2(b1−α1))
b1b2(1−c1c2)

and p′(1) = b2(b1−α1−b2c1)+b1(b2−c2(b1−α1))
b1b2(1−c1c2)

(15)

If b1 < α1 + b2c1 and b2 < c2(b1 − α1) then 1 < c1c2 and by (15), p(1) < 0. Combining this
with the fact that p(0) = det JT̃(E) > 0, it follows that E is a saddle point. If b1 > α1 + b2c1 and
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b2 > c2(b1 − α1) then 1 > c1c2 and from (15) we have p(1) > 0 and p′(1) > 0. Combining this
with p(0) > 0, we conclude that E is locally asymptotically stable.

(d) For t ∈ [0, b2), the eigenvalues of JT̃(Et) are λ1 = α1(b2−t)
b1b2

and λ2 = 1. Since α1 < b1 we clearly
have that Et are non-hyperbolic equilibrium points of the stable type. It follows by immediate
checking that the eigenvector associated with λ1 is e1 = ( (b1−α1)(b2−t)

b1c2t , 1), which points towards
the first quadrant for t ∈ [0, b2).

The global behavior of system (5) is described by the following result. Please note that the proofs
presented for Theorem 6 differ from those of Theorem 5 in order to depict an alternative approach.

Theorem 6. Consider system (5).

(a) If α1 ≥ b1 then Ey is the unique equilibrium solution of system (5) and it is locally asymptotically stable.
Every solution in the first quadrant which starts off of the x-axis converges to Ey and every solution
which starts on the positive x-axis converges to the singular point (0, 0).

(b) For α1 < b1, if b1 > α1 + b2c1, b2 < c2(b1 − α1) (resp. b1 < α1 + b2c1, b2 > c2(b1 − α1)) then
system (5) has equilibrium solutions Ex and Ey where Ex (resp. Ey) is locally asymptotically stable and
Ey (resp. Ex) is a saddle point. The basin of attraction of Ex (resp. Ey) is the first quadrant of initial
conditions without the positive part of the y-axis (resp. x-axis), which is attracted by Ey (resp. Ex).

(c) If α1 < b1, b1 > α1 + b2c1, and b2 > c2(b1 − α1) then system (5) has equilibrium solutions Ex,
Ey and E. The equilibrium solutions Ex and Ey are saddle points and E is locally asymptotically stable.
Every solution in the first quadrant which starts off of the coordinate axes converges to E and every
solution which starts on the positive x-axis (resp. y-axis) converges to Ex (resp. Ey).

(d) If α1 < b1, b1 < α1 + b2c1, and b2 < c2(b1 − α1) then system (5) has equilibrium solutions Ex, Ey and
E. The equilibrium solutions Ex and Ey are locally asymptotically stable and the interior equilibrium
E is a saddle point. There exists the global stable manifold Ws(E) and the global unstable manifold
Wu(E), where Ws(E) is the graph of a continuous, non-decreasing function and Wu(E) is the graph
of a continuous, non-increasing function which connects all three equilibrium solutions. The region in
the first quadrant above (resp. below) the curve Ws(E) is the basin of attraction of Ey (resp. Ex) and the
curve Ws(E) \ {(0, 0)} is the basin of attraction of E.

(e) If α1 < b1, b1 = α1 + b2c1, and b2 = c2(b1− α1) then there is an infinite family of equilibrium solutions
Et for which there exists the global stable manifold Ws(Et) for all t ∈ [0, b2], which is the graph of
a continuous, non-decreasing function asymptotic to (0, 0) and is exactly the basin of attraction of Et.
The limiting equilibrium varies continuously with the initial condition.

(f) If Ex (resp. Ey) is non-hyperbolic and Ey (resp. Ex) is locally asymptotically stable then Ey (resp. Ex)
attracts the first quadrant of initial conditions except the positive part of the x-axis (resp. y-axis), which is
attracted by Ex (resp. Ey). If Ex (resp. Ey) is non-hyperbolic and Ey (resp. Ex) is a saddle point then
Ex (resp. Ey) attracts the first quadrant of initial conditions except the positive part of the y-axis (resp.
x-axis), which is attracted by Ey (resp. Ex).

See Figure 3 for graphical interpretation.

Proof.

(a) Let α1 ≥ b1. Lemma 3(c) and (d) guarantee that for initial conditions on the positive y-axis,
T̃(x0, y0) = Ey and for initial conditions on the positive x-axis, limn→∞ T̃n(x0, y0) = (0, 0).
To treat the dynamics in the interior of R2

+, considerRa := {(x, y) : x, y ≥ 0 and c2x + y ≤ b2}.
By Theorem 2 of [4], Ra is invariant. The region Ra also attracts the interior of R2

+. To verify
this, suppose that (x0, y0) 6∈ Ra with x0, y0 > 0. In this case c2x0 + y0 > b2 and

x1 =
b1x0

α1 + x0 + c1y0
< x0 and y1 =

b2y0

c2x0 + y0
< y0.
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It follows that there exists N > 0 such that for all n ≥ N, (xn, yn) ∈ Ra and thusRa is attracting.
To conclude the proof, suppose (x0, y0) ∈ Ra with x0, y0 > 0. In this case x1 < x0, y1 ≥ y0

and as a consequence of the invariance of Ra, {xn} is a decreasing sequence while {yn} is
a non-decreasing sequence. Therefore, limn→∞ T̃n(x0, y0) = Ey. The above arguments prove
that the basins of attraction for Ey and the singular point (0, 0) are B(Ey) = [0, ∞)× (0, ∞) and
B(0, 0) = [0, ∞)× {0}.

(b) Let α1 < b1, b1 > α1 + b2c1, and b2 < c2(b1 − α1). Lemma 3(c) and (d) guarantee that for all
initial conditions on the positive y-axis, T̃(x0, y0) = Ey and for all initial conditions on the
positive x-axis, limn→∞ T̃n(x0, y0) = Ex. To treat the interior of R2

+, consider Rb := {(x, y) :
x, y ≥ 0, c2x + y ≥ b2 and α1 + x + c1y ≤ b1} shown in Figure 4.

Please note that Rb is an invariant region by Theorem 2 of [4]. Consider (x0, y0) ∈ Rb with
x0, y0 > 0 and notice

x1 =
b1x0

α1 + x0 + c1y0
≥ x0 and y1 =

b2y0

c2x0 + y0
≤ y0.

As a consequence of the invariance of Rb, {xn} is a non-decreasing sequence and {yn} is
a non-increasing sequence. Therefore, using basic properties of sequences and the fact that T̃ is
strongly competitive, limn→∞ T̃n(x0, y0) = Ex. Finally, suppose (x0, y0) 6∈ Rb with x0, y0 > 0.
By Lemma 3(a), (xn, yn) ∈ [0, b1)× [0, b2] for all n ≥ 1. Choose (u, v) ∈ Rb with u, v > 0 such
that (u, v) �se (x1, y1) �se (x1, 0). Since T̃ is strongly competitive, notice

T̃n(u, v)�se T̃n(x1, y1)�se T̃n(x1, 0). (16)

Therefore, limn→∞ T̃n(x0, y0) = Ex. We have arrived at the desired result that the basins of
attraction for Ex and Ey are B(Ex) = (0, ∞)× [0, ∞) and B(Ey) = {0} × (0, ∞).

The proof for the case when b1 < α1 + b2c1, b2 > c2(b1 − α1) is similar and will be omitted.
(c) Let α1 < b1, b1 > α1 + b2c1, and b2 > c2(b1 − α1). As in part (b), Lemma 3(c) and (d) guarantee

that the positive part of the y-axis is a subset of B(Ey) and the positive part of the x-axis is
a subset of B(Ex). To treat the interior of R2

+, consider the regionRc shown in Figure 5.

Please note thatRc is invariant by Theorem 2 of [4]. Provided that (x0, y0) ∈ Rc with x0, y0 > 0,
monotonicity properties (similar to part (a) and (b)) along with Lemma 3(b) can be used to
prove that limn→∞ T̃n(x0, y0) = E. Suppose (x0, y0) 6∈ Rc with x0, y0 > 0. By Lemma 3(a)
we know that (xn, yn) ∈ [0, b1) × [0, b2] for all n ≥ 1. Moreover, since (x0, y0) �se (x0, 0)
then T̃n(x0, y0)�se T̃n(x0, 0) for all n ≥ 1. Consequently, there must exist an N ≥ 1 such that
(xN , yN) ∈ [0, b2

c2
)× [0, b2]. Now, choose (u, v), (s, t) ∈ Rc such that (u, v) �se (xN , yN) �se (s, t).

Since T̃ is strongly competitive we have

T̃n(u, v)�se T̃n(xN , yN)�se T̃n(s, t). (17)

Therefore, limn→∞ T̃n(x0, y0) = E for all (x0, y0) 6∈ Rc. We have reached the desired result that
the basins of attraction for E, Ex and Ey are B(E) = (0, ∞)× (0, ∞), B(Ex) = (0, ∞)× {0} and
B(Ey) = {0} × (0, ∞).

(d) Let α1 < b1, b1 < α1 + b2c1, and b2 < c2(b1 − α1). In light of Lemma 4(c), Theorems 1 and 5
of [6] guarantees that there exist the global stable and unstable manifolds for E, W s(E) and
Wu(E) respectively, with the above mentioned properties. An immediate checking shows that
Ey �se E �se Ex and that the interior of the ordered interval JEy, EK is a subset of B(Ey), while the
interior of the ordered interval JE, ExK is a subset of B(Ex). Now, take any point (x0, y0) ∈ R2

+
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such that (x0, y0) ≺se W s(E) (i.e., above W s(E)). Then (0, y0) �se (x0, y0) ≺se (xW s(E), y0),
where (xW s(E), y0) ∈ W s(E). By Lemma 3(c) and the monotonicity of T̃, for n ≥ 1,

Ey = T̃n((0, y0))�se T̃n((x0, y0))�se T̃n((xW s(E), y0)). (18)

Since limn→∞ T̃n((xW s(E), y0)) = E, (18) implies that T̃n((x0, y0)) enters the ordered interval
JEy, EK and so converges to Ey. In a similar way, one can show that the ordered interval JE, ExK
attracts all points belowW s(E), and so all such points converge to Ex.

(e) By Theorem 1 of [6], for each Et there exists the setW s(Et) passing through Et and asymptotic
to (0, 0), which is the graph of a continuous, non-decreasing function, which is exactly the basin
of attraction of Et. The continuity of the limiting equilibrium solution as a function of initial
conditions follows as in [9].

(f) The proof is similar to the proof of part (b) and will be omitted here.

Based on Figures 2 and 3, the global dynamics of systems (4) and (5) are similar. However,
the techniques of the proofs are different since the determinant of the map corresponding to system (4)
is identically zero in the first quadrant while the determinant of the map corresponding to (5) is
positive and the map satisfies (O+) condition. This condition greatly simplifies the proof for system (5).
The qualitative difference between system (1) and systems (4) and (5) is in the case when b1 ≤ 1, b2 ≤ 1
which is possible because of the fact that α1, α2 > 0. In this case, E0(0, 0) is a globally asymptotically
stable equilibrium for system (1), while the basin of attraction of the singular point E0(0, 0) is an empty
set for system (4), and the basin of attraction of the singular point E0(0, 0) is the non-negative part of
the x-axis for system (5). The major difference between systems (4) and (5) is the case α1 ≥ b1 which is
possible only for system (5) when the singular point (0, 0) has non-empty basin of attraction. Thus the
presence of α1 will introduce new dynamic scenario while the presence of both α1, α2 will introduce
one additional dynamic scenario. As we mentioned in Remark 1 systems (1) and (4) are solvable for
the special values of parameters while there is not a formula for the exact solution of system (5) at this
time for any choice of parameters.

b2 − c2(b1 − α1)

b1 − α1 − b2c1

E

Ex

EyEy

Ex

Ex

Ey

E

Ex

Ey

Ex

Ey

Figure 3. Global dynamics of System (5).
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Ey

Ex

c2 x + y = b2

α1 + x + c1 y = b1

Rb

Figure 4. Rb := {(x, y) : x, y ≥ 0, c2x + y ≥ b2 and α1 + x + c1y ≤ b1}.

Ey

E

Ex

c2 x + y = b2

α
1 +

x+
c1 y =

b1Rc

Figure 5. Rc := {(x, y) : x, y ≥ 0 and (x + c1y + α1 − b1)(c2x + y− b2) ≤ 0}.

5. Conclusions

The presented results will serve as motivation for deriving the general results for monotone
(competitive and cooperative) systems in the plane such as in [24], which will lead to some standard
global dynamic scenarios results. The global dynamic scenarios results require detailed local stability
analysis which can be fairly complicated and tedious as soon as at least one quadratic term is present,
see for instance [25]. The presence of quadratic terms may cause the emergence of new dynamic
scenarios such as the Allee effect, periodic solutions, Naimark-Sacker bifurcation etc. Furthermore,
we are interested in extending the presented results to higher dimensions to so called multispecies
Leslie-Gower model which will consist of k ≥ 3 equation of type (1). Some results in this direction were
obtained in [11,12]. We would like to use the full strength of monotone systems theory which at this
moment is not available in dimensions higher than 2. The k ≥ 3 dimensional version of System (4) will
be an example of linear fractional homogeneous system which dynamics can be reduced to dynamics
of k− 1 linear fractional homogeneous system, which means that the dynamics 3-dimensional version
of System (4) can be reduced to dynamics of this system. In some special cases analogue to the ones in
Remark 1 one can find the explicit solution of such system and so obtain the dynamics in such case.
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