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ABSTRACT

Discrete dynamical systems are widely used in biological and entomologi-

cal applications to model interacting populations. The manuscripts included in

this thesis present global dynamic results for three different population models.

Manuscript 1 presents basic concepts and definitions for general systems of differ-

ence equations in order to lay the theoretical foundation for the remaining sections.

Manuscript 2 discusses competitive systems of difference equations with the

form

xn+1 =
b1 xn

α1 + xn + c1 yn
, yn+1 =

b2 yn
α2 + c2 xn + yn

n = 0, 1, 2, . . . ,

where the parameters b1, b2 are positive real numbers and α1, α2, c1, c2 and the ini-

tial conditions x0, y0 are arbitrary nonnegative numbers. In particular, the special

cases when α1 = α2 = 0 and when α1 6= 0 and α2 = 0 are investigated. The global

behavior of the system in these cases is fully characterized. Global results are

also established for general competitive systems of difference equations that have

a particular orientation of equilibria and certain local stability characteristics.

In Manuscript 3, the system of difference equations

xn+1 =
αxn

1 + β yn
, yn+1 =

γ xn yn
xn + δ yn

, n = 0, 1, 2, . . . ,

is analyzed, where α, β, γ, δ, x0, y0 are positive real numbers. The system was for-

mulated by P. H. Leslie in 1948 and models a host-parasite type of prey-predator

interaction. Manuscript 3 provides the most complete dynamical analysis to date

of this classic model. A boundedness and persistence result along with global at-

tractivity results for various parameter regions are established. Numerical evidence

of chaotic behavior is also presented for particular solutions of the system.



Finally, Manuscript 4 discusses structured models of difference equations with

the forms:

yn+1 = M ( f1(y
(1)
n ), . . . , fk(y

(k)
n ) )t, n = 0, 1, 2, . . . , y0 ∈ Rk

+, (I)

and

xn+1 = A xn +
k∑
`=1

f`(c`xn) b`, n = 0, 1, 2, . . . , x0 ∈ X+, (II)

In (I) and (II), M ∈ Rk×k
+ , A is a bounded, linear operator on an ordered Banach

space X with positive cone X+, and for each ` ∈ {1, . . . , k}, b` ∈ X+, c` is a

positive, bounded linear functional on X, and f` : [0,∞)→ [0,∞) is a continuous

function with f`(0) = 0. Conditions are established under which there is a one-

to-one correspondence between positive equilibrium points (persistence states) of

(I) and (II). Under these conditions, and when X = Rm, the stability type of the

zero equilibrium (extinction state) of (I) is shown to be the same as that for (II).

Particular attention is given to the case when k = 2. The utility of this analysis

is that the dynamics of model (II) on a high dimensionality state space X can be

reduced to model (I), where the dimension of the state space is the same as the

number k of nonlinearities that appear in (II).
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PREFACE

This thesis has been written in manuscript form in accordance with the guide-

lines set forth by the Graduate School of the University of Rhode Island. The main

content of the thesis is made up of three research papers, Manuscripts 2, 3 and 4.

Manuscript 2 was submitted for publication on March 7th, 2017 to Advances in

Difference Equations , Manuscript 3 was submitted for publication on March 23rd,

2017 to the Journal of Difference Equations and Applications and Manuscript 4

will be submitted in the future.
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MANUSCRIPT 1

Introduction

The dynamical behavior of biological populations has been a primary focus

of applied mathematicians for hundreds of years. Modeling and predicting popu-

lation growth can be tracked back to 1202 when Leonardo Fibonacci considered

the progression of a hypothetical rabbit population in his book Liber Abaci [1, 2].

These models grew more complex in 1798 when Thomas Malthus presented the

Malthusian exponential growth model and in 1844 when Pierre François Verhulst

introduced the logistic model of population growth [1, 2]. The theory in the area

of population dynamics has seen steady progress and many complicated biolog-

ical phenomena have been accurately modeled. These models are referred to as

dynamical systems. Dynamical systems mathematically describe the temporal pro-

gression of a given quantity and they come in the form of both difference equations

and differential equations [3].

Differential equations are continuous dynamical systems that account for the

behavior of a system at all times and are useful in modeling phenomena that are

continuously evolving [3]. Difference equations, on the other hand, are discrete dy-

namical systems that are useful when describing populations with non-overlapping

generations. These discrete models often exhibit unique dynamical scenarios that

cannot otherwise be modeled by differential equations and can more accurately

reflect the global character of certain populations. See [4], [5], [6], and [7] for

interesting applications.

The focus of this thesis is on systems of difference equations and their ap-

plications to population dynamics. In particular, several population models are

analyzed and results are presented related to the global dynamics of these sys-
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tems. The remainder of the introduction is organized as follows: an overview of

the types of population models models that are studied in Manuscripts 2, 3, and

4 is presented in Section 1.1 along with a summary of the important results that

are attained. Basic theory of difference equations is then presented in Section 1.2,

which helps to lay the theoretical foundation for the proceeding manuscripts.

1.1 Overview of Population Models

The population models that are studied within this thesis include competitive

models, host-parasitoid and host parasite models, and structured population mod-

els. Background for each of these models is presented in this section. An overview

of the specific results that are attained in Manuscripts 2, 3, and 4 is also provided.

A two-dimensional competitive system of difference equations has the form

xn+1 = f(xn, yn), yn+1 = g(xn, yn), n = 0, 1, 2, . . . ,

where the function f is nondecreasing in the first variable and nonincreasing in

the second and g is nonincreasing in the first variable and nondecreasing in the

second [8]. Systems of this type can be used to model two species living in an

environment that are in competition for the same resources. Competitive systems

satisfy monotonicty properties (as discussed in Section 1.2.2), which are useful

in proving global results. See [9] and [10] for interesting competitive systems of

difference equations that have been studied recently. There are many dynamical

scenarios that can exist for a competitive system, including competitive exclusion,

competitive coexistence, and Allee’s effect . Competitive exclusion occurs when one

species is driven to extinction, competitive coexistence occurs when two competing

species reach an equilibrium state and are able to coexist, and Allee’s effect occurs

when two species with nonzero populations are both driven to extinction [11].

Many of the original two-species, discrete competition models were based off of

the Lotka-Volterra competitive system of differential equations and they exhibited

2



primarily the phenomenon of competitive exclusion [12]. One of the first models

that incorporated competitive coexistence was formulated by J. C. Gower and P.

H. Leslie in 1958 [13]. Based on experiments performed by T. Park in 1948 [14],

Leslie and Gower presented the competitive model

N1(t+ 1) =
λ1N1(t)

1 + α1N1(t) + β1N2(t)
, (1)

N2(t+ 1) =
λ2N2(t)

1 + α2N2(t) + β2N1(t)
, t = 0, 1, 2 . . . ,

where λ1, λ2, α1, α2, β1, β2 are positive constants. Manuscript 2 focuses on a com-

parable form of system (1), given by

xn+1 =
b1 xn

α1 + xn + c1 yn
, yn+1 =

b2 yn
α2 + c2 xn + yn

, n = 0, 1, 2, . . . ,

where the parameters b1, b2 are positive real numbers, and α1, α2, c1, c2 and the

initial conditions x0, y0 are arbitrary nonnegative numbers. The case when all

parameters are taken to be positive was studied in [12] by J. M. Cushing. The

analysis in [12] is not complete, however, as it does not treat the sensitive case

when α1 = 0 or α2 = 0. In these cases, the extinction equilibrium is replaced by

a singular point at the origin, which greatly complicates the problem. Manuscript

2 fully characterizes the global dynamics of this system when α1 = 0 or α2 = 0

and the dynamical scenarios are compared to the case when α1, α2 > 0. The proof

techniques reflect the sensitivity of the singular point at the origin. Using these

techniques, global results are also established for general competitive systems of

difference equations that have a particular orientation of equilibria (or singular

points) and certain local stability characteristics.

A host-parasitoid model is a type of prey-predator model involving two species,

a parasitoid and a host [3]. A parasitoid is a type of parasite that lives freely and

lays eggs in the larvae or pupae of the host population. The development of the

parasitoid depends on the population of the host and the population of the host

3



depends on how many of its peers survived the infestation [3, 15]. The general

framework for describing the dynamics of such a model is

xn+1 = a xn f(xn, yn), yn+1 = c xn (1− f(xn, yn)), n = 0, 1, 2, . . . ,

where xn and yn represent the size of the host and parasitoid populations in the

nth generation, respectively, and f(xn, yn) represents the fraction of hosts that

survive the parasitoid [15, 16]. One of the first models of this type was developed

by Nicholson and Bailey in 1935 for a host, Trialeurodes vaporariorum, and a

parasitoid, Encarsia formosa, and is described by the system

xn+1 = a xn e
−b yn , yn+1 = xn

(
1− e−b yn

)
, n = 0, 1, 2, . . . .

This model assumes that the reproductive rate of the host and the searching ef-

ficiency of the parasitoid are constant and that the environment is consistent for

all parasitoids [16, 17]. A host-parasite model has a similar structure to that of

a host-parasitoid model but the parasite may not kill the host [3, 18]. One host-

parasite model of particular interest, formulated in 1948 by P. H. Leslie, is given

by

N1(t+ 1) =
λ1N1(t)

1 + (λ1 − 1) N2(t)
K2

, (2)

N2(t+ 1) =
λ2N2(t)

1 + (λ2 − 1) K1N2(t)
K2N1(t)

, t = 0, 1, 2, . . . ,

where λ1, λ2 > 1 and K1, K2 are positive constants (see page 239 in [19]).

Manuscript 3 takes a closer look at system (2) and presents the most complete

analysis to date of this classic model. A boundedness and persistence result along

with global attractivity results for various parameter regions are established. Nu-

merical evidence of chaotic behavior is also presented for particular solutions of

the system.
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The third type of population model that is analyzed in this thesis is referred

to as a structured population model. Structured models are useful for populations

that include individuals with a variety of physical or physiological characteristics

that may interact with the environment differently [4]. These differences play an

important role in the dynamics of the entire population and must be taken into

account within the model. The basic theory for models of this type is presented by

J. M. Cushing in [2]. The general framework involves dividing a population into

k classes so that at discrete time n ∈ N the number of individuals (or density) in

class ` is y
(`)
n . The vector yn ∈ Rk

+, defined by

yn = (y(1)
n , y(2)

n , . . . , y(k)
n ),

tracks the size of each of the k classes. It is typically assumed that the new number

of individuals in each class is a function of the previous number of individuals in

each of the k classes [2]. This inter-dependence can be condensed in the matrix

model:

yn+1 = P (yn) yn, n = 0, 1, 2, . . . , y0 ∈ Rk
+, (3)

which is explored in [2]. The operator P is referred to as a projection matrix.

Manuscript 4 focuses on a special case of systems of the form (3), given by

yn+1 = M ( f1(y
(1)
n ), . . . , fk(y

(k)
n ) )t, n = 0, 1, 2, . . . , y0 ∈ Rk

+, (I)

where M ∈ Rk×k
+ and for ` ∈ {1, . . . , k}, f` : [0,∞) → [0,∞) is a continuous

function with f`(0) = 0. System (I) is similar to a genetics model formulated by

Friedland and Karlin in [20]. Results are established in Manuscript 4 related to

the existence, uniqueness, and stability of a positive equilibrium (i.e. persistence

state) as well as to the stability of the origin (i.e. extinction state). Particular

attention is given to the special case when k = 2. The benefit of analyzing system

(I) is that it can be used as a tool to study more complicated structured population

5



models, given by

xn+1 = A xn +
k∑
`=1

f`(c`xn) b`, n = 0, 1, 2, . . . , x0 ∈ X+, (II)

where A is a bounded, linear operator on an ordered Banach space X with positive

cone X+, and for each ` ∈ {1, . . . , k}, b` ∈ X+ and c` is a positive bounded linear

functional on X. Model (II) is a generalization of a model studied by Rebarber,

Townley, and Tenhumberg in [21] and can be useful to model plant and fishery

populations. The matrix A is referred to as the survival operator and it reflects

survival and growth of each class. The terms f`(·)b` are referred to as fecundity

operators and they reflect the nonlinear dependence on new offspring and the

redistribution of the offspring to each class of the structured model [21].

Model (II) is potentially set in a high dimensionality state space X. The non-

linearities, however, are of a very specific type. Manuscript 4 presents a technique

to greatly reduce the complexity of the problem to one where the dimension of

the state space is the same as the number k of nonlinearities that appear in (II).

In particular, a k-dimensional model of the form (I) is found to have a significant

connection with (II). Conditions are given under which there is a one-to-one cor-

respondence between the positive equilibrium points of (I) and (II). Furthermore,

when the state space of (II) is Rm, it is established that the stability character of

the origin in (I) is the same as that of (II). In this way, all of the results established

for system (I) can be used to establish results for (II).

For convenience to the reader, basic theory and results are presented in the

coming sections that contribute to establishing global results for the three models

introduced above.

1.2 Basic Notions of Difference Equations

Difference equations are used to describe the progression of a given quantity

over discrete time increments. As mentioned above, a common application is

6



tracking the size of a population with discrete generations. If we denote by xn

the size of the population in the nth generation and assume that the size of the

population in the n+ 1st generation (i.e. xn+1) is a function of xn, we arrive at the

difference equation

xn+1 = f(xn), n = 0, 1, 2, . . . (4)

If the initial value of the population were known (say x0), then (4) provides all of

the information needed to track the population through each generation [22, 23].

The resulting sequence {x0, f(x0), f(f(x0)), f(f(f(x0))), . . . } is called a solution

of (4). This type of difference equation is first-order (since xn+1 only depends on

one previous generation) and autonomous (since xn+1 does not depend explicitly

on n) [22, 23].

Of particular interest in this thesis are systems of difference equations mod-

eling two or more populations that depend on one another through each discrete

generation. Consider a planar region D ∈ R2. A two-dimensional, first-order

system of difference equations has the form

xn+1 = f(xn, yn), yn+1 = g(xn, yn), n = 0, 1, 2, . . . (5)

where f, g : D → R are continuous functions and (x0, y0) ∈ D. Systems of this

form can be used to model two populations that interact in many different ways, in-

cluding cooperation, competition, and predator-prey type interactions. Associated

with system (5) is a continuous map T : D → D, where

T (u, v) =

(
f(u, v)
g(u, v)

)
. (6)

If we specify an initial condition (x0, y0) ∈ D and repeatedly apply the map T , the

resulting sequence of ordered pairs {(x0, y0), T (x0, y0), T
2(x0, y0), T

3(x0, y0), . . . } is

called a solution of (5) (see [22, 23]).
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If one were to find a solution of a difference equation by specifying initial

conditions, the main question to consider is how the resulting sequence behaves as

n → ∞. A complete description of the behavior of the solutions for an arbitrary

initial condition is referred to as the global behavior of the difference equation. This

analysis begins with finding the equilibrium points of the system. An equilibrium

point (x̄, ȳ) of (5) is a point that satisfies x̄ = f(x̄, ȳ) and ȳ = g(x̄, ȳ). Equilibrium

points of (5) are referred to as fixed points of (6) where (x̄, ȳ) = T (x̄, ȳ). For each

fixed point, the basin of attraction B(x̄, ȳ) is the largest set of points in D that are

attracted to (x̄, ȳ) under forward iterations of T (see [23]). That is,

B(x̄, ȳ) = {(x, y) ∈ D : T n(x, y)→ (x̄, ȳ) as n→∞}.

There is also the potential for the existence of periodic solutions, which play a

role in the global behavior of system (5). A minimal period-two solution is a point

(x, y) ∈ D such that T 2(x, y) = (x, y) and T (x, y) 6= (x, y) [22, 23]. The same

principles described above can also be applied to larger dimensional systems.

The allure of difference equations is that the global behavior of a system can

be extremely simple or incredibly complex. There can be multiple equilibrium

points, periodic points, attracting curves, unbounded behavior, and even chaos.

Determining global behavior is the central focus of much of the research that is

done in difference equations. The following subsections provide some of the more

specific theory that is used to establish global results.

1.2.1 Local Stability Analysis

To determine the global behavior of a system of difference equations, the first

step is understanding the local behavior in a neighborhood of each equilibrium

point. This analysis is referred to as local stability analysis . Consider the two-

dimensional system of difference equations given in (5). Let || · || denote the

euclidean norm in R2. That is, ||(x, y)|| =
√
x2 + y2. The following definitions
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can be seen in their original form in introductory textbooks written by M. R. S.

Kulenović and O. Merino [23] or S. Elaydi [22]. The definitions are presented for

a two-dimensional system of differences equations, but the same principles apply

for higher dimension.

Definition 1 Consider an equilibrium point (x̄, ȳ) of system (5). Then

(i) (x̄, ȳ) is locally stable if for any ε > 0 there exists δ > 0 such that for every

initial point (x0, y0) with ||(x0, y0) − (x̄, ȳ)|| < δ, the iterates (xn, yn) satisfy

||(xn, yn)− (x̄, ȳ)|| < ε for all n > 0.

(ii) (x̄, ȳ) is locally asymptotically stable if, in addition to being stable, (xn, yn)→

(x̄, ȳ) as n→∞ for all (x0, y0) that satisfy ||(x0, y0)− (x̄, ȳ)|| < δ.

Consider the map T : D → D given in (6), where f and g are taken to be

continuously differentiable on D. In order to determine the local character of a

fixed point, one can consider the linearization of the map near each fixed point.

This requires computing the Jacobian matrix of T at (x̄, ȳ), which is given by

JT (x̄, ȳ) =

(
∂f
∂x

(x̄, ȳ) ∂f
∂y

(x̄, ȳ)
∂g
∂x

(x̄, ȳ) ∂g
∂y

(x̄, ȳ)

)
. (7)

The linearization of the map T , denoted by DT , at the fixed point (x̄, ȳ) is then

given by

DT (x̄, ȳ) =

(
∂f
∂x

(x̄, ȳ) ∂f
∂y

(x̄, ȳ)
∂g
∂x

(x̄, ȳ) ∂g
∂y

(x̄, ȳ)

)(
x
y

)
, (8)

and the characteristic equation associated with the Jacobian matrix (7) is

λ2 − tr(JT (x̄, ȳ))λ+ det(JT (x̄, ȳ)) = 0. (9)

Locally, the map T behaves like the linearization given in (8). Therefore, the

eigenvalues λ1 and λ2 of JT (x̄, ȳ) (i.e. roots of the characteristic equation) provide

information about the local stability characteristics of (x̄, ȳ). If both eigenvalues
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have modulus less than one, then (x̄, ȳ) is locally asymptotically stable and if at

least one of the eigenvalues is greater than one in modulus, then (x̄, ȳ) is unsta-

ble. Furthermore, a fixed point (x̄, ȳ) of the map T is hyperbolic if JT (x̄, ȳ) has

no eigenvalues on the unit circle, otherwise (x̄, ȳ) is said to be nonhyperbolic. Hy-

perbolic fixed points can have three qualitatively distinct classifications, which are

described in Definition 2.

Definition 2 Consider an equilibrium point (x̄, ȳ) of system (5),

(i) If (x̄, ȳ) is locally asymptotically stable then the eigenvalues of JT (x̄, ȳ) are

such that |λ1|, |λ2| < 1. In this case, there is an open neighborhood U of (x̄, ȳ)

in which all points converge to the equilibrium under forward iterations of the

map T . That is,

T n(x, y)→ (x̄, ȳ) for all (x, y) ∈ U.

Such an equilibrium point is referred to as a sink. Parts (ii) and (iii) describe

the two unstable situations.

(ii) If the eigenvalues of JT (x̄, ȳ) are such that |λ1|, |λ2| > 1, then there is an

open neighborhood U of (x̄, ȳ) in which all points converge to the equilibrium

point under backward iterations of the map T . That is,

T−n(x, y)→ (x̄, ȳ) for all (x, y) ∈ U.

Such an equilibrium point is referred to as a source or repeller.

(iii) If the eigenvalues of JT (x̄, ȳ) are such that |λ1| < 1 and |λ2| > 1, then in

any neighborhood U of (x̄, ȳ), the forward iterates under T of some points in

U converge to (x̄, ȳ) and the backward iterates under T of some points in U

converge to (x̄, ȳ). Such a point is referred to as a saddle point.
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There are shortcuts that can be used to determine the local character of

equilibrium points in the two dimensional case, referred to as the Schur-Cohn

Criteria.

Theorem 1 The following conditions hold for equilibrium points (x̄, ȳ) of system

(5):

(i) An equilibrium point (x̄, ȳ) is locally asymptotically stable if and only if

|tr JT (x̄, ȳ)| < 1 + det JT (x̄, ȳ) < 2.

(ii) An equilibrium point (x̄, ȳ) is locally a repeller if and only if

|tr JT (x̄, ȳ)| < |1 + det JT (x̄, ȳ)| and |det JT (x̄, ȳ)| > 1.

(iii) An equilibrium point (x̄, ȳ) is locally a saddle point if and only if

|tr JT (x̄, ȳ)| > |1 + det JT (x̄, ȳ)| and tr JT (x̄, ȳ)2 − 4 det JT (x̄, ȳ) > 0.

(iv) An equilibrium point (x̄, ȳ) is nonhyperbolic if and only if

|tr JT (x̄, ȳ)| = |1 + det JT (x̄, ȳ)| or |tr JT (x̄, ȳ)| ≤ 2 and det JT (x̄, ȳ) = 1.

In the case of a nonhyperbolic equilibrium (i.e. when eigenvalues of JT (x̄, ȳ)

satisfy |λj| = 1 for j = 1 or 2), more analysis is needed to determine the local sta-

bility character. This analysis involves higher order terms in the Taylor expansion,

which will not be covered here.

Another theorem that is helpful in analyzing eigenvalues of the Jacobian ma-

trix is the Perron-Frobenius Theorem from [24]. Prior to stating the theorem, a

few basic notions of matrices are needed: A matrix A ∈ Rm×m is nonnegative (pos-

itive), written A ≥ 0 (A > 0) if all of the entries of A are nonnegative (positive).
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A nonnegative matrix A is called primitive if there exists an N ∈ N such that

AN > 0. The matrix A is irreducible if for any i, j there is a k = k(i, j) such that

(Ak)ij > 0 [24]. The Perron-Frobenius Theorem specifically treats nonnegative,

irreducible matrices.

Theorem 2 Let A ∈ Rm×m be nonnegative and irreducible. Then,

(i) A has a positive (real) eigenvalue λmax such that all other eigenvalues of A

satisfy |λ| ≤ λmax.

(ii) λmax has algebraic and geometric multiplicity one, and has an eigenvector

x > 0.

(iii) Any nonnegative eigenvector is a multiple of x.

(iv) Suppose y ∈ Rm
+ , y 6= 0 and µ ∈ R is such that A y ≤ µ y. Then y > 0 and

µ ≥ λmax, with µ = λmax if and only if y is a multiple of x.

(v) If 0 ≤ B ≤ A, B 6= A, then every eigenvalue σ of B satisfies |σ| < λmax.

(vi) If A is primitive, then all other eigenvalues of A satisfy |λ| < λmax

In the following section, basic notions of monotone maps are presented, which

can play a critical role in determining the global dynamics of systems of difference

equations.

1.2.2 Monotone Systems

A set P ⊂ Rm is an order cone if P is closed, convex, and such that λP ⊂ P

for all λ ≥ 0, P ∩ (−P) = {0} and P 6= {0}. Every order cone P induces a partial

order � on Rm. For points x, y ∈ P , we say x � y if and only if y− x ∈ P , x ≺ y

if and only if y − x ∈ P \ {0}, and x � y if and only if y − x ∈ int(P). The
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ordered set Jx, yK relative to the partial order � is defined by

Jx, yK := {u ∈ Rm : x � u � y}.

For D ⊂ Rm, a map T : D → D is said to be monotone (with respect to the partial

order �) if x � y implies that T (x) � T (y). The map T is strictly monotone if x ≺

y implies that T (x) ≺ T (y) and strongly monotone if x ≺ y implies that T (x) �

T (y). See [8] for more detailed information regarding monotone systems. The

following result is stated for monotone (i.e. order preserving) maps and appears

in [25].

Theorem 3 For a nonempty set D ∈ Rm and a partial order � on Rm, let T :

D → D be an order-preserving map and let u, v ∈ D be such that u ≺ v and

Ju, vK ⊂ D. If u � T (u) and T (v) � v, then Ju, vK is an invariant set and

(i) There exists a fixed point of T in Ju, vK.

(ii) If T is strongly order-preserving then there exists a fixed point of T in Ju, vK

that is stable relative to Ju, vK.

(iii) If there is only one fixed point in Ju, vK then it is a global attractor in Ju, vK

and therefore asymptotically stable relative to Ju, vK.

A direct consequence of Theorem 3 is Corollary 1 proven by Dancer and Hess in

[25].

Corollary 1 If the nonnegative cone of a partial ordering � is a generalized or-

thant in Rm, and if T has no fixed points in Ju, vK other than u and v, then the

interior of Ju, vK is either a subset of the basin of attraction of u or the basin of

attraction of v.

If we restrict out attention to R2, then there are two standard partial orders,

the North-East and South-East partial orders [8].
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Definition 3 The North-East partial order �ne on R2 is defined as follows:

(
x1
y1

)
�ne

(
x2
y2

)
⇔


x1 ≤ x2

y1 ≤ y2

, (10)

where the positive cone is taken to be the standard first quadrant. The South-East

partial order �se on R2 is defined as follows:

(
x1
y1

)
�se

(
x2
y2

)
⇔


x1 ≤ x2

y1 ≥ y2

, (11)

where the positive cone is taken to be the standard fourth quadrant.

The partial-orders in Definition 3 are associated with two important monotone

maps on R2. For D ⊂ R2, a map T : D → D is competitive if it is nondecreasing

with respect to the South-East partial order �se. In other words:(
x1
y1

)
�se

(
x2
y2

)
⇒ T

(
x1
y1

)
�se T

(
x2
y2

)
. (12)

The map T is strongly competitive if it is strictly increasing with respect to the

South-East partial order [8]. A sufficient condition for T to be strongly competitive

is that the Jacobian matrix associated with T has the sign configuration(
+ −
− +

)
.

Similarly, T is said to be cooperative if it is nondecreasing with respect to the

North-East partial order �ne and strongly cooperative if it is strictly increasing

with respect to the North-East partial order [8]. A sufficient condition for T to be

strongly cooperative is that the Jacobian matrix associated with T has the sign

configuration (
+ +
+ +

)
.
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The following definition presents another important property that competitive

maps can satisfy on R2 [8].

Definition 4 Suppose D ⊂ R2 is nonempty. A competitive map T : D → D

(i) Satisfies the (O+) condition if for all x, y ∈ D, T (x) �ne T (y)⇔ x �ne y

(ii) Satisfies the (O−) condition if for all x, y ∈ D, T (x) �ne T (y)⇔ y �ne x

Sufficient conditions for competitive maps to satisfy the (O+) and (O−) con-

ditions are provided in Theorem 4 [8].

Theorem 4 Consider D ⊂ R2, where D is a Cartesian product of two intervals

in R. Let T : D → D be a competitive, C(1) map.

(i) If T is injective and det JT (x) > 0 for all x ∈ D then T satisfies (O+) on D.

(ii) If T is injective and det JT (x) < 0 for all x ∈ D then T satisfies (O−) on D.

Competitive maps that satisfy either of the conditions from Definition 4 ex-

hibit well behaved global dynamics as evidenced by the following theorem, which

was originally proven by deMottoni-Schiaffino and was later generalized for com-

petitive maps by Smith [26].

Theorem 5 Suppose D ⊂ R2. If T is a competitive map that satisfies (O+), then

for all x ∈ D, {T n(x)} is eventually component-wise monotone. If the orbit of x

has compact closure, then it converges to a fixed point of T . If instead (O−) is

satisfied, then for all x ∈ D, {T 2n(x)} is eventually component-wise monotone.

If the orbit of x has compact closure in D, then its omega limit set is either a

period-two orbit or a fixed point.

The above results are utilized throughout Manuscripts 2 and 4, which deal

specifically with monotone maps.
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1.2.3 Global Manifolds

Many authors have devoted time to developing general theory for determining

the global dynamics for systems of difference equations. One important concept

involves the existence of global stable and unstable manifolds. The local stable

and unstable manifolds for a fixed point of the map (6) are defined in [23] as

Ws
loc(x̄, ȳ) := {(x, y) : T n(x, y)→ (x̄, ȳ) as n→∞},

Wu
loc(x̄, ȳ) := {(x, y) : T−n(x, y)→ (x̄, ȳ) as n→∞}.

Kulenović and Merino in [11, 27, 28] present several theorems that allow the

local manifolds to be extended in certain situations.

Theorem 6 Let T be a competitive map on a rectangular region D ⊂ R2. Let

x̄ ∈ D be a fixed point of T such that ∆ := D∩ int(Q1(x̄)∪Q3(x̄)) is nonempty (i.e

x̄ is not the NW or SE vertex of D), and T is strongly competitive on ∆. Suppose

that the following statements are true.

(a) The map T has a C(1) extension to a neighborhood of x̄.

(b) The Jacobian JT (x̄) of T at x̄ has real eigenvalues λ, µ such that 0 < |λ| < µ,

where |λ| < 1 and the eigenspace Eλ associated with λ is not a coordinate

axis.

Then there exists a curve C ⊂ D through x̄ that is invariant and a subset of the

basin of attraction of x̄, such that C is tangential to the eigenspace Eλ at x̄, and

C is the graph of a strictly increasing continuous function of the first coordinate

on an interval. Any endpoints of C in the interior of D are either fixed points or

minimal period-two points. In the latter case, the set of endpoints of C is a minimal

period-two orbit of T .
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In the particular systems that are studied in this thesis, the endpoints of C

are boundary points of the region D. This situation is further discussed in the

following theorem from [28].

Theorem 7 For the curve C to have endpoints in ∂D, it is sufficient that at least

one of the following conditions is satisfied.

(i) The map T has no fixed points nor periodic points of minimal period-two in

∆.

(ii) The map T has no fixed points in ∆, detJT(x̄) > 0, and T (x̄) = x̄ has no

solutions x ∈ ∆

(iii) The map T has no points of minimal period-two in ∆, detJT(x̄) > 0, and

T (x) = x̄ has no solutions x ∈ ∆.

The existence of the curve C described in the previous two theorems is in-

credibly helpful in determining basins of attraction of fixed points. The following

theorem expounds on this idea [28].

Theorem 8 Assume the hypotheses of Theorem 6, and let C be the curve whose

existence is guaranteed by Theorem 6. If the endpoints of C belong to ∂D, then C

separates D into two connected components, namely

W− := {x ∈ D \ C : ∃ y ∈ C with x �se y},

W+ := {x ∈ D \ C : ∃ y ∈ C with y �se x},

such that the following statements are true

(i) W− is invariant and dist(Tn(x),Q2(x̄))→ 0 as n→∞ for every x ∈ W−.

(ii) W+ is invariant and dist(Tn(x),Q4(x̄))→ 0 as n→∞ for every x ∈ W+.
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If, in addition x̄ is an interior point of D and T is C(2) and strongly competitive in

a neighborhood of x̄, then T has no periodic points in the boundary of Q1(x̄)∪Q3(x̄)

except for x̄, and the following statements are true.

(i) For every x ∈ W− there exists n0 ∈ N such that T n(x) ∈ intQ2(x̄) for n ≥ n0.

(ii) For every x ∈ W+ there exists n0 ∈ N such that T n(x) ∈ intQ4(x̄) for n ≥ n0.

The manuscripts of this thesis utilize the basic theory presented in the previous

sections to establish global results for the population models introduced in Section

1.1.
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Abstract

Global dynamic results are obtained for families of competitive systems of

difference equations of the form

xn+1 =
b1 xn

α1 + xn + c1 yn
, yn+1 =

b2 yn
α2 + c2 xn + yn

n = 0, 1, . . . ,

where the parameters b1, b2 are positive real numbers, and α1, α2, c1, and c2 and the

initial conditions x0 and y0 are arbitrary nonnegative numbers. In particular, we

investigate the effect of parameters α1, α2 on the global dynamics of this system.

2.1 Introduction

Consider the system of difference equations

xn+1 =
b1 xn

α1 + xn + c1 yn
, yn+1 =

b2 yn
α2 + c2 xn + yn

n = 0, 1, . . . , (1)

where the parameters b1, b2 are positive real numbers, and α1, α2, c1, and c2 and the

initial conditions x0 and y0 are arbitrary nonnegative numbers. We consider the

effect of terms α1, α2 on the global dynamics of system (1). The global dynamics

of (1) was considered in the case where the parameters α1, α2 are positive in [1, 2]

and the complete description of the dynamics was given in [2], where the following

result was obtained:

Assuming, without loss of generality, that α1 = α2 = 1, it has been shown in

[1] that under the condition b1 > 1 and b2 > 1, the points

E0(0, 0), E1(b1 − 1, 0), E2(0, b2 − 1)

are equilibria of equation (1), and that for some values of the parameters there

exists an additional equilibrium point E3, located in the open positive quadrant,

given by

E3

(
b2 − 1

c1c2 − 1

(
c1 −

b1 − 1

b2 − 1

)
,
b1 − 1

c1c2 − 1

(
c2 −

b2 − 1

b1 − 1

))
. (2)
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Important subsets of parameter space are described in Table 1, together with

corresponding behavior of fixed points established in [1].

Condition c1(b2 − 1) < b1 − 1 c1(b2 − 1) > b1 − 1

c2(b1 − 1) < b2 − 1

Case 1.
E0 is a repeller
E1 is a saddle
E2 is a saddle
E3 is interior local attractor

Case 2.
E0 is a repeller
E1 is a saddle
E2 attractor on [0,∞)×(0,∞)
No interior fixed point exists

c2(b1 − 1) > b2 − 1

Case 3.
E0 is a repeller
E1 attractor on (0,∞)×[0,∞)
E2 is a saddle
No interior fixed point exists

Case 4.
E0 is a repeller
E1 is a local attractor
E2 is a local attractor
E3 is an interior saddle

Table 1: Global behavior of solutions to (1) when b1 > 1 and b2 > 1. Equality
relations are not represented for the sake of a simpler description.

An application of Theorem 9 in [2] applies when parameters vary from Case

2 to Case 4 of Table 1. Set

A = {α ∈ R4
+ : α = (b1, b2, c1, c2) and c1(b2 − 1) > b1 − 1 > 0}

and define Tα to be the map of system (1) restricted to R = [0,∞)× (0,∞), that

is,

Tα(x, y) =

(
b1x

1 + x+ c1y
,

b2y

1 + c2x+ y

)
.

Therefore, Theorem 9 in [2] gives global behavior of solutions to system (1)

on R = [0,∞) × (0,∞) for α ∈ A. In particular, a bifurcation occurs when

the equilibrium xα changes its local character from a locally stable equilibrium

to a saddle point. This happens when the parameters cross the critical surface

Γ(b1, b2, c1, c2) = c2(b1 − 1)− b2 + 1 = 0.

It is also shown in [1] that the open, positive semiaxis (0,∞)×{0} is attracted

to E1, and that the open, positive semiaxis {0} × (0,∞) is attracted to E2. The
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following two results describe the global dynamics of system (1) in all cases. The

first result gives the global dynamics in the hyperbolic case and the second result

in the non-hyperbolic case.

Theorem 1 Consider system (1).

(i) Suppose that c1 (b2 − 1) > b1 − 1 > 0. If c2 (b1 − 1) > b2 − 1, then E2 is

globally asymptotically stable on [0,∞) × (0,∞) and E1 attracts all points

on the open semiaxis (0,∞) × {0}. If c2 (b1 − 1) < b2 − 1, then the stable

manifold Ws(E3) in [0,∞)× [0,∞) is the graph of a continuous, increasing

function of the first coordinate. Furthermore, a solution {xn} converges to

E1 whenever x0 is below Ws(E3), and {xn} converges to E2 whenever x0 is

above Ws(E3).

(ii) Suppose that c1 (b2 − 1) < b1 − 1 > 0. If c2 (b1 − 1) > b2 − 1, then E1 is

globally asymptotically stable on (0,∞)× [0,∞) and E2 attracts all points on

the open semiaxis {0} × (0,∞). If c2 (b1 − 1) < b2 − 1, then E3 is globally

asymptotically stable on (0,∞) × (0,∞), E1 attracts all points on the open

semiaxis (0,∞)×{0}, and E2 attracts all points on the open semiaxis {0}×

(0,∞).

See Figure 1 for graphical interpretation.

The non-hyperbolic case when

c1 (b2 − 1) = b1 − 1 and c2 (b1 − 1) = b2 − 1 (3)

was not considered in [1]. When (3) holds, a direct calculation gives that the

equilibrium points of T are E0(0, 0) and all points on the segment E := {Et : 0 ≤

t ≤ 1 }, where

Et := ((b1 − 1) (1− t), (b2 − 1) t) , 0 ≤ t ≤ 1.
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The eigenvalues of the Jacobian of T at Et are

λ1 = 1 and λ2 = (1− t) 1

b1
+ t

1

b2
, 0 ≤ t ≤ 1 ,

and the corresponding eigenvectors are

e1 =

(
−1− b1

1− b2
, 1

)
and e2 =

(
b2 (1− b1)2 (1− t) , b1 (1− b2)2 t

)
, 0 ≤ t ≤ 1.

It is shown in [3] that, for system (1), the hypotheses of Theorem 5 in [4] are

satisfied and that all solutions fall inside an invariant rectangular region. Therefore,

every solution of (1) converges to an equilibrium point. A direct calculation shows

that the origin is a repeller. We conclude that every nonzero solution converges

to a point (x, y) ∈ E . Also, with an argument similar to the one used in [5], one

has that the equilibrium depends continuously on the initial condition. That is, if

T ∗(x, y) := limT n(x, y), then T ∗ is continuous. These observations, together with

an application of Theorem 1 in [4] lead to the following result.

Theorem 2 Assume (3) holds. Then,

(i) Every nonzero solution to system (1) converges to an equlibrium (x, y) ∈ E.

(ii) For every (x, y) ∈ E with x 6= 0 and y 6= 0, the stable set Ws
(x,y) is an

unbounded, increasing curve C with endpoint (0, 0).

(iii) The limiting equilibrium varies continuously with the initial condition.

See Figure 1 for graphical interpretation.

Statement (ii) excludes equilibria of the form (0, y) and (x, 0) since the hypotheses

of Theorem 1 in [4] are not satisfied at these points.

In this paper we consider two related systems, namely

xn+1 =
b1xn

xn + c1yn
, yn+1 =

b2yn
c2xn + yn

n = 0, 1, . . . (4)
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Figure 1: Global dynamics of system (1).

and

xn+1 =
b1xn

α1 + xn + c1yn
, yn+1 =

b2yn
c2xn + yn

n = 0, 1, . . . , (5)

where all present coefficients are positive and the initial conditions are nonnegative.

We derive the global dynamics of both systems (4) and (5), which explains the effect

of the parameters α1, α2 on the global dynamics.

The paper is organized as follows. The second section presents some basic

preliminary results about competitive systems, which is our main tool in proving

the results. The third section contains the global dynamics of system (4) and the

fourth section gives the global dynamics of system (5). The fifth section presents

some results on global dynamic scenarios for general competitive systems. Actually,

we show that all global dynamic results that hold for any of the three systems (1),
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(4), and (5) can be immediately applied to a general competitive system and that

the global behavior of all three systems is determined by the linearized dynamics.

We will compare and contrast the global dynamics of (4) and (5) with that of

system (1).

2.2 Preliminaries

In this section we provide some basic facts about competitive maps and sys-

tems of difference equations in the plane.

Definition 5 Let R be a subset of R2 with nonempty interior, and let T : R → R

be a map (i.e. a continuous function). Set T (x, y) = (f(x, y), g(x, y)). The map T

is competitive if f(x, y) is nondecreasing in x and nonincreasing in y and g(x, y)

is nonincreasing in x and nondecreasing in y. If both f and g are nondecreasing

in x and y, we say that T is cooperative. If T is competitive (cooperative), the

associated system of difference equations{
xn+1 = f(xn, yn)
yn+1 = g(xn, yn)

, n = 0, 1, 2, . . . , (x0, y0) ∈ R (6)

is said to be competitive (cooperative). The map T and the associated system

of difference equations are said to be strongly competitive (strongly cooperative)

if the adjectives nondecreasing and nonincreasing are replaced by increasing and

decreasing.

If T is differentiable, a sufficient condition for T to be strongly competitive is

that the Jacobian matrix of T at any point (x, y) ∈ R has the sign configuration(
+ −
− +

)
.

Competitive systems of the form (6) have been studied by many authors such as

Clark, Kulenović, and Selgrade, Hess, Hirsch and Smith, Kulenović, Merino, and
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Nurkanović, Leonard and May, Smale and others [6, 7, 8, 9, 10, 11, 12, 13]. See [14]

for interesting applications of this theory to basic models in population dynamics.

Denote with �se the South-East partial order in the plane whose nonnegative

cone is the standard fourth quadrant {(x, y) : x ≥ 0, y ≤ 0}, that is, (x1, y1) �

(x2, y2) if and only if x1 ≤ x2 and y1 ≥ y2. The North-East partial order �ne is

defined analogously with the nonnegative cone given by the standard first quadrant

{(x, y) : x ≥ 0, y ≥ 0}.

Competitive maps T in the plane preserve the South-East ordering: T (u) �se

T (v) whenever u �se v. Similarly, cooperative maps in the plane preserve the

North-East ordering. In fact, the concepts of competitive and cooperative (for

maps) may be defined in terms of the order preserving properties of maps. Thus

the theory of competitive maps is a special case of the theory of order preserving

maps (or monotone operators).

Order preserving maps in Rn, and in particular competitive maps in R2, may

have chaotic dynamics. Smale [12] showed that any continuous time vector field

on the standard (n− 1)-simplex in Rn can be embedded on a smooth, competitive

vector field in Rn for which the simplex is an attractor. In the case of a planar

system (6), this means that any first order difference equation, including chaotic,

can be embedded into a competitive system (6) in the plane. An effective algebraic

method to do this is provided by Smith in [13].

Let � be a partial order on Rn with nonnegative cone P . For x, y ∈ Rn the

order interval Jx, yK is the set of all z such that x � z � y. We say x ≺ y if x � y

and x 6= y. Also, x � y if y − x ∈ int(P). A map T on a subset of Rn is order

preserving if T (x) � T (y) whenever x � y, strictly order preserving if T (x) ≺ T (y)

whenever x ≺ y, and strongly order preserving if T (x)� T (y) whenever x ≺ y.
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Let T : R → R be a map with a fixed point x and letR′ be an invariant subset

of R that contains x. We say that x is stable (asymptotically stable) relative to

R′ if x is a stable (asymptotically stable) fixed point of the restriction of T to R′.

Definition 6 Let R be a nonempty subset of R2. A competitive map T : R → R

is said to satisfy condition (O+) if for every x, y in R, T (x) �ne T (y) implies

x �ne y, and T is said to satisfy condition (O−) if for every x, y in R, T (x) �ne

T (y) implies y �ne x.

The following theorem was proved by deMottoni-Schiaffino for the Poincaré

map of a periodic competitive Lotka-Volterra system of differential equations.

Smith generalized the proof to competitive and cooperative maps [15].

Theorem 3 Let R be a nonempty subset of R2. If T is a competitive map for

which (O+) holds, then for all x ∈ R, {T n(x)} is eventually componentwise mono-

tone. If the orbit of x has compact closure, then it converges to a fixed point of T .

If instead (O−) holds, then for all x ∈ R, {T 2n(x)} is eventually componentwise

monotone. If the orbit of x has compact closure in R, then its omega limit set is

either a period-two orbit or a fixed point.

The next two results are stated for order-preserving maps on Rn. These results

are known but are given here for completeness. See [7] for a more general version

that is valid in ordered Banach spaces.

Theorem 4 For a nonempty set R ⊂ Rn and � a partial order on Rn, let T :

R → R be an order preserving map, and let a, b ∈ R be such that a ≺ b and

Ja, bK ⊂ R. If a � T (a) and T (b) � b, then Ja, bK is invariant and

i. There exists a fixed point of T in Ja, bK.
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ii. If T is strongly order preserving, then there exists a fixed point in Ja, bK which

is stable relative to Ja, bK.

iii. If there is only one fixed point in Ja, bK, then it is a global attractor in Ja, bK

and therefore asymptotically stable relative to Ja, bK.

Corollary 2 If the nonnegative cone of � is a generalized quadrant in Rn, and if

T has no fixed points in Ju1, u2K other than u1 and u2, then the interior of Ju1, u2K is

either a subset of the basin of attraction of u1 or a subset of the basin of attraction

of u2.

Our main tool will be results from [2, 4, 16] regarding the existence of the

global stable and unstable manifolds of competitive maps in the plane.

The non-hyperbolic equilibrium solution of system (6) is said to be of stable

(resp. unstable) type if the second eigenvalue of the Jacobian matrix evaluated at

the equilibrium solution is by absolute value less than 1 (resp. bigger than 1).

2.3 Global Dynamics of System (4)

First we give some basic results about the global behavior of system (4).

Denote by

T (x, y) =

(
b1 x

x+ c1 y
,

b2 y

c2 x+ y

)
,

the map associated with system (4). System (4) is homogeneous and was partially

investigated in [17].

Lemma 1 The following statements hold:

(a) Every solution of system (4) satisfies xn ≤ b1, yn ≤ b2, n ≥ 1.

(b) det JT (x, y) = 0 for every (x, y), where JT denotes the Jacobian matrix of

the map T .
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(c) T (x0, 0) = Ex(b1, 0), T (0, y0) = Ey(0, b2) for every x0 > 0, y0 > 0.

(d) Every solution of system (4) satisfies the difference equation

rn+1 =
b2
b1
rn

1 + c1rn
c2 + rn

, n ≥ 0,

where rn = yn/xn.

(e) If

(b2 − b1c2)(b1 − b2c1) > 0, (7)

then the map T has an invariant line

`S : y =
b2 − b1c2
b1 − b2c1

x. (8)

Proof. The Jacobian matrix JT of the map T has the form

JT (x, y) =


b1c1y

(x+c1y)2
− b1c1x

(x+c1y)2

− b2c2y
(c2x+y)2

b2c2x
(c2x+y)2

 , (9)

which implies (b). Parts (a) and (c) follow by immediate checking. Part (d)

follows by dividing equations of system (4). Part (e) follows from (d) since b2−b1c2
b1−b2c1

is exactly an equilibrium of the equation in (d). 2

System (4) always has two equilibrium solutions on the axes, Ex(b1, 0),

Ey(0, b2). It can also have either exactly one interior equilibrium solution E or

an infinite number of interior equilibrium solutions Et. Since the interior equilib-

rium solution E is an intersection of two equilibrium curves, C1 : x + c1 y = b1

and C2 : c2 x + y = b2, it will exist if either b2
c2
< b1,

b1
c1
< b2 (x-intercept of C2

smaller than x-intercept of C1 and y-intercept of C2 bigger than y-intercept of C1)

or b2
c2
> b1,

b1
c1
> b2 (x-intercept of C1 smaller than x-intercept of C2 and y-intercept

of C1 bigger than y-intercept of C2). These two geometrical conditions can be

unified as condition (7).
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Condition Equilibrium Points

(b2 − b1c2)(b1 − b2c1) < 0,
b2 = b1c2 and b1 6= b2c1, Ex, Ey

or b2 6= b1c2 and b1 = b2c1
(b2 − b1c2)(b1 − b2c1) > 0 Ex, Ey, E
b2 = b1c2 and b1 = b2c1 Ex, Ey, Et

Table 2: The equilibrium points for system (4).

Condition (7) implies that c1c2 6= 1, in which case the interior equilibrium

E(x̄, ȳ) is given as:

x̄ =
b1 − b2c1
1− c1c2

, ȳ =
b2 − b1c2
1− c1c2

. (10)

Notice that b2 < b1c2, b1 < b2c1 implies that c1c2 > 1 and b2 > b1c2, b1 > b2c1

implies that c1c2 < 1. If either (b2 − b1c2)(b1 − b2c1) < 0, b2 = b1c2 and b1 6=

b2c1, or b1 = b2c1 and b2 6= b1c2, then there are no interior equilibrium points.

Furthermore, if b2 = b1c2 and b1 = b2c1, the two equilibrium curves C1, C2 coincide

and every point on the segment x + c1y = b1, x, y ≥ 0 is an equilibrium solution

Et(b1 − c1t, t), t ∈ [0, b2]. See Table 2 for a summary of the equilibrium points of

system (4).

The following result describes the local stability character of all equilibrium

solutions.

Lemma 2 Consider system (4).

(a) The equilibrium solution Ex is locally asymptotically stable if b2 < b1c2, non-

hyperbolic of stable type if b2 = b1c2, and a saddle point if b2 > b1c2. In each

case, the eigenvectors associated with the eigenvalues λ1 = 0 and λ2 = b2
b1c2

are e1 = (1, 0) and e2 = (− b1c1c2
b2

, 1).

(b) The equilibrium solution Ey is locally asymptotically stable if b1 < b2c1, non-

hyperbolic of stable type if b1 = b2c1, and a saddle point if b1 > b2c1. In each
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case, the eigenvectors associated with the eigenvalues λ1 = 0 and λ2 = b1
b2c1

are e1 = (0, 1) and e2 = ( b1
c1c2b2

,−1).

(c) The interior equilibrium solution E is a saddle point when b2 < b1c2 and

b1 < b2c1 and is locally asymptotically stable when b2 > b1c2 and b1 > b2c1.

(d) The interior equilibrium solutions Et are non-hyperbolic of the stable type

and the eigenvector which corresponds to λ1 = 0 is given as e1 = (1, y).

Proof.

(a) In view of (9), we have

JT (Ex) =

 0 −c1

0 b2
b1c2

 ,

which implies that the eigenvalues of the Jacobian matrix are λ1 = 0, λ2 =

b2
b1c2

. The corresponding eigenvectors are as stated.

(b) In view of (9), we have

JT (Ey) =

 b1
b2c1

0

−c2 0

 ,

which implies that the eigenvalues of the Jacobian matrix are λ1 = 0, λ2 =

b1
b2c1

. The corresponding eigenvectors are as stated.

(c) The eigenvalues of the Jacobian matrix evaluated at the equilibrium E,

λ1 = 0 and λ2 = tr(JT (E)), correspond to the roots of the characteristic

polynomial p(t) = t2 − tr(JT (E)) t. Note that λ2 > 0 by (9). Furthermore

p(1) =
(b1 − b2c1)(b2 − b1c2)

b1b2(1− c1c2)
,

p′(1) =
b2(b1 − b2c1) + b1(b2 − b1c2)

b1b2(1− c1c2)
.
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Consequently, if b2 < b1c2 and b1 < b2c1, then p(1) < 0 and p′(1) > 0 and

if b2 > b1c2 and b1 > b2c1, then p(1) > 0 and p′(1) > 0. It follows that E

is a saddle point when b2 < b1c2 and b1 < b2c1 and is locally asymptotically

stable when b2 > b1c2 and b1 > b2c1.

(d) In this case, the eigenvalues of the Jacobian matrix evaluated at the equilib-

rium Et are λ1 = 0, λ2 = 1. The eigenvector that corresponds to λ1 = 0 is

e1 = (1, y), where y > 0 satisfies x + c1y = b1 and points towards the first

quadrant.

2

Now, global behavior of system (4) is described by the following result:

Theorem 5 Consider system (4).

(a) If b2 < b1c2, b1 < b2c1, then the equilibrium solutions Ex, Ey are locally

asymptotically stable and the interior equilibrium E is a saddle point. The

separatrix `S, which is a graph of a continuous, nondecreasing curve, is the

basin of attraction of E and the region below (resp. above) `S is the basin of

attraction of Ex (resp. Ey).

(b) If b2 > b1c2, b1 > b2c1, then the equilibrium solutions Ex, Ey are saddle

points and the interior equilibrium E is locally asymptotically stable. Every

solution in the first quadrant which starts off the coordinate axes converges

to E. Every solution which starts on the positive part of the x-axis (resp.

y-axis) is attracted by Ex (resp. Ey).

(c) If b2 < b1c2, b1 > b2c1 (resp. b2 > b1c2, b1 < b2c1), then the equilibrium

solution Ex (resp. Ey) is locally asymptotically stable and Ey (resp. Ex) is a

saddle point. The basin of attraction of Ex (resp. Ey) is the first quadrant of
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initial conditions without the positive part of the y-axis (resp. x-axis), which

is attracted by Ey (resp. Ex).

(d) If b1 = b2c1 and b2 = b1c2, then there is an infinite family of equilibrium so-

lutions Et, t ∈ [0, b2] for which there exists the global stable manifold Ws(Et),

which is the graph of a continuous, nondecreasing function asymptotic to

(0, 0) and is exactly the basin of attraction of Et. The limiting equilibrium

varies continuously with the initial condition.

(e) If Ex (resp. Ey) is non-hyperbolic and Ey (resp. Ex) is locally asymptotically

stable, then Ey (resp. Ex) attracts the first quadrant of initial conditions

except the positive part of x-axis (resp. y-axis) which is attracted by Ex

(resp. Ey). If Ex (resp. Ey) is non-hyperbolic and Ey (resp. Ex) is a saddle

point, then Ex (resp. Ey) attracts the first quadrant of initial conditions

except the positive part of the y-axis (resp. x-axis), which is attracted by Ey

(resp. Ex).

See Figure 2 for graphical interpretation.

Proof.

(a) First we show that T does not have any period-two solutions. Our condition

implies c1c2 > 1. By direct calculation one can show that a period-two

solution satisfies the equation

b1b2(c1c2 − 1)x2 + (b1b2(c1c2 − 1) + b21c2 − b22c1)x+ b1b2(b1 + b2c1) = 0,

which means that both terms of the solution are negative and so there is no

period-two solution in the first quadrant.

Taking into account that the Jacobian matrix evaluated at E has all nonzero

entries, Theorem 5 of [16] implies the existence and uniqueness of both global
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stable and unstable manifolds, Ws(E) and Wu(E), and thus Ws(E) = `S.

Furthermore, Theorem 5 of [16] implies that every (x0, y0) below `S will

satisfy T n((x0, y0)) ∈ JE,ExK for some n ≥ N . In view of Corollary 2,

T n((x0, y0)) → Ex. In a similar way, we can treat the case when (x0, y0) is

above `S.

(b) In view of Lemma 2 part (a), the eigenvectors which correspond to Ex and

Ey point to the interior of the fourth and the second quadrant, which means

that the local unstable manifolds Wu
loc(Ex) and Wu

loc(Ey) exist and point

strictly toward E. Thus, there exist points u, v in the interior of JEy, ExK,

arbitrarily close to Ey and Ex such that u �se T (u) �se E �se T (v) �se v.

Now, statement (iii) of Theorem 4 implies that E is a global attractor in

Ju, vK, which completes the proof.

(c) Assume that b2 < b1c2, b1 > b2c1, which implies that Ex is locally asymp-

totically stable and Ey is a saddle point. In view of Lemma 2 part (b),

the eigenvector which corresponds to Ey points to the interior of the fourth

quadrant, which means that the local unstable manifold Wu
loc(Ey) exists and

points strictly toward Ex. Thus, there exists a point u in the interior of

JEy, ExK, arbitrarily close to Ey such that u �se T (u). Consequently, the

map T has a lower solution in every neighborhood of Ey, which in view of

Theorem 6 in [4] implies that the interior of JEy, ExK is a subset of the basin

of attraction of Ex. The result follows.

The proof when b2 > b1c2, b1 < b2c1 is similar and will be omitted.
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(d) By Theorem 1 of [4], for each Et there exists the setWs(Et) passing through

Et and asymptotic to (0, 0), which is the graph of a continuous, nondecreasing

function and is exactly the basin of attraction of Et. The continuity of the

limiting equilibrium solution as a function of initial conditions follows as in

[5].

(e) The proof is similar to the proof of part (c) and will be omitted.

2

Figure 2: Global dynamics of system (4).
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2.4 Global Dynamics of System (5)

In this section we present the global behavior of system (5). Denote by

T̃ (x, y) =

(
b1 x

α1 + x+ c1 y
,

b2 y

c2 x+ y

)
,

the map associated with system (5).

Lemma 3 The following statements hold

(a) Every solution of system (5) satisfies xn < b1, yn ≤ b2, n ≥ 1.

(b) T̃ (x, y) satisfies (O+) condition on (0,∞)× (0,∞) and so T has no period-

two points.

(c) For every y0 > 0, T̃ (0, y0) = (0, b2).

(d) For every x0 > 0, T̃ n(x0, 0) =

(
b1 − α1

1− (α1

b1
)n
, 0

)
.

Proof. Part (a) and (c) follow by immediate checking and part (d) follows by solving

the resulting Beverton-Holt one-dimensional equation. In light of Theorem 4 in

[13], (b) can be proven by verifying that T̃ is injective and that det(JT̃ (x, y)) > 0

for all (x, y) ∈ (0,∞)× (0,∞). Notice

T̃

(
x1
y1

)
= T̃

(
x2
y2

)
⇔

(
b1x1

α1+x1+c1y1
b2y1

c2x1+y1

)
=

(
b1x2

α1+x2+c1y2
b2y2

c2x2+y2

)
.

This is equivalent to

x1y2 = x2y1, α1(x1 − x2) = c1(x2y1 − x1y2).

It follows that x1 = x2, y1 = y2 and thus T̃ is injective. The Jacobian matrix

associated with the map T̃ has the form

JT̃ (x, y) =


b1(α1 + c1y)

(α1 + x+ c1y)2
− b1c1x

(α1 + x+ c1y)2

− b2c2y

(c2x+ y)2
b2c2x

(c2x+ y)2

 . (11)
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Therefore,

det(JT̃ (x, y)) =
α1b1b2c2x

(c2x+ y)2(α1 + x+ c1y)2
> 0 (12)

for all (x, y) ∈ (0,∞)× (0,∞). 2

Note that a direct consequence of the above form of JT̃ (x, y) is that T̃ is

strongly competitive. This will play a pivotal role in the global behavior of the

system.

System (5) always has an equilibrium solution on the y-axis, Ey(0, b2). Pro-

vided that α1 < b1, there exists an equilibrium solution on the x-axis, Ex(b1−α1, 0).

Depending on the values of the parameters α1, b1, b2, c1 and c2, there is also the pos-

sibility of either exactly one interior equilibrium solution E or an infinite number

of interior equilibrium solutions Et.

The interior equilibrium solution is an intersection of two equilibrium curves

C1 : α1 + x + c1 y = b1 and C2 : c2 x + y = b2. This solution will exist if either

b2
c2
< b1−α1 and b2 >

b1−α1

c1
(i.e. the x-intercept of C2 is smaller than the x-intercept

of C1 and the y-intercept of C2 is bigger than the y-intercept of C1) or b1−α1 <
b2
c2

and b1−α1

c1
> b2 (i.e. the x-intercept of C1 is smaller than the x-intercept of C2 and

the y-intercept of C1 is bigger than the y-intercept of C2). As in (7), these two

geometrical conditions can be unified as

∆1∆2 > 0, (13)

where ∆1 = (b2 − c2(b1 − α1)) and ∆2 = (b1 − α1 − b2c1). Condition (13) implies

that c1c2 6= 1 and the interior equilibrium E(x̄, ȳ) is given as:

x̄ =
b1 − α1 − b2c1

1− c1c2
, ȳ =

b2 − c2(b1 − α1)

1− c1c2
.

Note that if ∆1∆2 < 0, ∆1 = 0 and ∆2 6= 0, or ∆2 = 0 and ∆1 6= 0, then there does

not exist an interior equilibrium solution. Since α1 ≥ b1 implies that ∆1∆2 ≤ 0,

we must have α1 < b1 in order for an interior equilibrium point to exist.
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Furthermore, if ∆1 = ∆2 = 0, then the two equilibrium curves C1 and C2

coincide and every point of the segment c2 x + y = b2, x, y ≥ 0 is an equilibrium

solution Et(b1 − α1 − c1t, t), t ∈ [0, b2]. The equilibrium points for system (5) are

summarized in Table 3.

Condition Equilibrium Points

α1 ≥ b1 Ey

α1 < b1

∆1∆2 < 0,
∆1 = 0,∆2 6= 0, Ex, Ey
∆1 6= 0,∆2 = 0

∆1∆2 > 0 Ex, Ey, E
∆1 = ∆2 = 0 Ex, Ey, Et

Table 3: The equilibrium points for system (5).

The local stability character of Ex, Ey, E and Et are presented in Lemma 4.

The proof requires Proposition 1.

Proposition 1 The eigenvalues λ and µ of JT̃ (E) are positive.

Proof. In view of (11) we have

JT̃ (E) =


b2c1 − b1c1c2 + α1

b1(1− c1c2)
−c1(b1 − b2c1 − α1)

b1(1− c1c2)

−c2(b2 − c2(b1 − α1))

b2(1− c1c2)
c2(b1 − b2c1 − α1)

b2(1− c1c2)

 , (14)

which implies

det(JT̃ (E)) =
c2α1(b1 − α1 − b2c1)

b1b2(1− c1c2)
.

Note that the equilibrium point E exists under the hypothesis ∆1∆2 > 0, which

means that either b2
c2
< b1 − α1 and b2 >

b1−α1

c1
or b1 − α1 <

b2
c2

and b1−α1

c1
> b2. In

either case, we have det(JT̃ (E)) > 0, and consequently, λ · µ > 0. Since system

(5) is strongly competitive, by the Perron-Frobenius Theorem [7, 18], the largest

eigenvalue of JT̃ (E) is real and positive. The result follows. 2
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Lemma 4 Consider system (5).

(a) The equilibrium solution Ex exists if α1 < b1. It is locally asymptotically

stable if b2 < c2(b1−α1), non-hyperbolic of stable type if b2 = c2(b1−α1), and

a saddle point if b2 > c2(b1 − α1). In each case, the eigenvectors associated

with the eigenvalues λ1 = α1

b1
and λ2 = b2

c2(b1−α1)
are e1 = (1, 0) and e2 =

( c1c2(b1−α1)2

c2α1(b1−α1)−b1b2 , 1), respectively.

(b) The equilibrium solution Ey always exists and it is locally asymptotically

stable if b1 < α1 + b2c1, non-hyperbolic of stable type if b1 = α1 + b2c1, and

a saddle point if b1 > α1 + b2c1. In each case, the eigenvectors associated

with the eigenvalues λ1 = 0 and λ2 = b1
b2c1+α1

are e1 = (0, 1) and e2 =

( b1
c2(α1+b2c1)

,−1), respectively.

(c) The interior equilibrium solution E exists if ∆1∆2 > 0 and it is locally asymp-

totically stable if b1 > α1 + b2c1 and b2 > c2(b1 − α1) and a saddle point if

b1 < α1 + b2c1 and b2 < c2(b1 − α1).

(d) The interior equilibrium solutions Et exist if α1 < b1, b1 = α1+b2c1 and b2 =

c2(b1 − α1). They are non-hyperbolic of the stable type and the eigenvector

associated with λ1 where |λ1| < 1 is e1 = ( (b1−α1)(b2−t)
b1c2t

, 1).

Proof.

(a) In view of (11), we have

JT̃ (Ex) =


α1

b1
−c1(b1 − α1)

b1

0
b2

c2(b1 − α1)

 ,

which implies that the eigenvalues of the Jacobian matrix are λ1 = α1

b1
, λ2 =

b2
c2(b1−α1)

. The corresponding eigenvectors are as stated.
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(b) In view of (11), we have

JT̃ (Ey) =


b1

α1 + b2c1
0

−c2 0

 ,

which implies that the eigenvalues of the Jacobian matrix are λ1 = 0, λ2 =

b1
α1+b2c1

. The corresponding eigenvectors are as stated.

(c) Denote the eigenvalues of JT̃ (E) by λ1 and λ2, which represent the roots of the

characteristic polynomial, p(t) = t2 − trJT̃ (E)t+ det JT̃ (E). By Proposition

1, λ1 and λ2 are real and positive. Notice

p(1) =
(b1 − α1 − b2c1)(b2 − c2(b1 − α1))

b1b2(1− c1c2)
, (15)

p′(1) =
b2(b1 − α1 − b2c1) + b1(b2 − c2(b1 − α1))

b1b2(1− c1c2)
. (16)

If b1 < α1 + b2c1 and b2 < c2(b1 − α1), then 1 < c1c2 and by (15), p(1) < 0.

Combining this with the fact that p(0) = det JT̃ (E) > 0, it follows that E

is a saddle point. If b1 > α1 + b2c1 and b2 > c2(b1 − α1), then 1 > c1c2 and

from (15) and (16) we have p(1) > 0 and p′(1) > 0. Combining this with

p(0) > 0, we conclude that E is locally asymptotically stable.

(d) For t ∈ [0, b2), the eigenvalues of JT̃ (Et) are λ1 = α1(b2−t)
b1b2

and λ2 = 1. Since

α1 < b1, we clearly have that Et are non-hyperbolic equilibrium points of the

stable type. It follows by immediate checking that the eigenvector associated

with λ1 is e1 = ( (b1−α1)(b2−t)
b1c2t

, 1), which points towards the first quadrant for

t ∈ [0, b2).

2
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The global behavior of system (5) is described by the following result. Note

that the proofs presented for Theorem 6 differ from those of Theorem 5 in order

to depict an alternative approach.

Theorem 6 Consider system (5).

(a) If α1 ≥ b1, then Ey is the unique equilibrium solution of system (5) and it

is locally asymptotically stable. Every solution in the first quadrant which

starts off of the x-axis converges to Ey and every solution which starts on

the positive x-axis converges to the singular point (0, 0).

(b) For α1 < b1, if b1 > α1 + b2c1, b2 < c2(b1 − α1) (resp. b1 < α1 + b2c1,

b2 > c2(b1−α1)), then system (5) has equilibrium solutions Ex and Ey where

Ex (resp. Ey) is locally asymptotically stable and Ey (resp. Ex) is a saddle

point. The basin of attraction of Ex (resp. Ey) is the first quadrant of initial

conditions without the positive part of the y-axis (resp. x-axis), which is

attracted by Ey (resp. Ex).

(c) If α1 < b1, b1 > α1 + b2c1, and b2 > c2(b1 − α1), then system (5) has

equilibrium solutions Ex, Ey and E. The equilibrium solutions Ex and Ey

are saddle points and E is locally asymptotically stable. Every solution in

the first quadrant which starts off of the coordinate axes converges to E and

every solution which starts on the positive x-axis (resp. y-axis) converges to

Ex (resp. Ey).

(d) If α1 < b1, b1 < α1 + b2c1, and b2 < c2(b1 − α1), then system (5) has

equilibrium solutions Ex, Ey and E. The equilibrium solutions Ex and Ey

are locally asymptotically stable and the interior equilibrium E is a saddle

point. There exists the global stable manifold Ws(E) and the global unstable

manifold Wu(E), where Ws(E) is the graph of a continuous, nondecreasing
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function and Wu(E) is the graph of a continuous, nonincreasing function

which connects all three equilibrium solutions. The region in the first quadrant

above (resp. below) the curve Ws(E) is the basin of attraction of Ey (resp.

Ex) and the curve Ws(E) \ {(0, 0)} is the basin of attraction of E.

(e) If α1 < b1, b1 = α1+b2c1, and b2 = c2(b1−α1), then there is an infinite family

of equilibrium solutions Et for which there exists the global stable manifold

Ws(Et) for all t ∈ [0, b2], which is the graph of a continuous, nondecreasing

function asymptotic to (0, 0) and is exactly the basin of attraction of Et. The

limiting equilibrium varies continuously with the initial condition.

(f) If Ex (resp. Ey) is non-hyperbolic and Ey (resp. Ex) is locally asymptotically

stable, then Ey (resp. Ex) attracts the first quadrant of initial conditions

except the positive part of the x-axis (resp. y-axis), which is attracted by Ex

(resp. Ey). If Ex (resp. Ey) is non-hyperbolic and Ey (resp. Ex) is a saddle

point, then Ex (resp. Ey) attracts the first quadrant of initial conditions

except the positive part of the y-axis (resp. x-axis), which is attracted by Ey

(resp. Ex).

See Figure 5 for graphical interpretation.

Proof.

(a) Let α1 ≥ b1. Lemma 3(c) and 3(d) guarantee that for initial conditions on

the positive y-axis, T̃ (x0, y0) = Ey and for initial conditions on the positive

x-axis, limn→∞ T̃
n(x0, y0) = (0, 0). To treat the dynamics in the interior of

R2
+, consider Ra := {(x, y) : x, y ≥ 0 and c2x + y ≤ b2}. By Theorem 2 of

[16], Ra is invariant. The regionRa also attracts the interior of R2
+. To verify

this, suppose that (x0, y0) 6∈ Ra with x0, y0 > 0. In this case c2x0 + y0 > b2
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and

x1 =
b1x0

α1 + x0 + c1y0
< x0 and y1 =

b2y0
c2x0 + y0

< y0.

It follows that there exists N > 0 such that for all n ≥ N , (xn, yn) ∈ Ra

and thus Ra is attracting. To conclude the proof, suppose (x0, y0) ∈ Ra

with x0, y0 > 0. In this case x1 < x0, y1 ≥ y0 and as a consequence of the

invariance of Ra, {xn} is a decreasing sequence while {yn} is a nondecreasing

sequence. Therefore, limn→∞ T̃
n(x0, y0) = Ey. The above arguments prove

that the basins of attraction for Ey and the singular point (0, 0) are B(Ey) =

[0,∞)× (0,∞) and B(0, 0) = [0,∞)× {0}.

(b) Let α1 < b1, b1 > α1 + b2c1, and b2 < c2(b1 − α1). Lemma 3(c) and 3(d)

guarantee that for all initial conditions on the positive y-axis, T̃ (x0, y0) = Ey

and for all initial conditions on the positive x-axis, limn→∞ T̃
n(x0, y0) = Ex.

To treat the interior of R2
+, consider Rb := {(x, y) : x, y ≥ 0, c2x + y ≥

b2 and α1 + x+ c1y ≤ b1} shown in Figure 3.

Ey

Ex

c2x+ y =
b2

α
1 + x+ c1y = b1

Rb

Figure 3: Rb := {(x, y) : x, y ≥ 0, c2x+ y ≥ b2 and α1 + x+ c1y ≤ b1}

Note that Rb is an invariant region by Theorem 2 of [16]. Consider (x0, y0) ∈

Rb with x0, y0 > 0 and notice

x1 =
b1x0

α1 + x0 + c1y0
≥ x0 and y1 =

b2y0
c2x0 + y0

≤ y0.
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As a consequence of the invariance of Rb, {xn} is a nondecreasing sequence

and {yn} is a nonincreasing sequence. Therefore, using basic properties of se-

quences and the fact that T̃ is strongly competitive, limn→∞ T̃
n(x0, y0) = Ex.

Finally, suppose (x0, y0) 6∈ Rb with x0, y0 > 0. By Lemma 3(a), (xn, yn) ∈

[0, b1) × [0, b2] for all n ≥ 1. Choose (u, v) ∈ Rb with u, v > 0 such that

(u, v) �se (x1, y1) �se (x1, 0). Since T̃ is strongly competitive, notice

T̃ n(u, v)�se T̃
n(x1, y1)�se T̃

n(x1, 0). (17)

Therefore, limn→∞ T̃
n(x0, y0) = Ex. We have arrived at the desired result

that the basins of attraction for Ex and Ey are B(Ex) = (0,∞)× [0,∞) and

B(Ey) = {0} × (0,∞).

The proof for the case when b1 < α1 + b2c1, b2 > c2(b1 − α1) is similar and

will be omitted.

(c) Let α1 < b1, b1 > α1 + b2c1, and b2 > c2(b1−α1). As in part (b), Lemma 3(c)

and 3(d) guarantee that the positive part of the y-axis is a subset of B(Ey)

and the positive part of the x-axis is a subset of B(Ex). To treat the interior

of R2
+, consider the region Rc shown in Figure 4.

Ey

E

Ex

c2x+ y = b2

α
1 +

x
+
c
1 y

=
b
1

Rc

Figure 4: Rc := {(x, y) : x, y ≥ 0 and (x+ c1y + α1 − b1)(c2x+ y − b2) ≤ 0}

Note that Rc is invariant by Theorem 2 of [16]. Provided that (x0, y0) ∈ Rc

with x0, y0 > 0, monotonicity properties (similar to part (a) and (b))
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along with Lemma 3(b) can be used to prove that limn→∞ T̃
n(x0, y0) = E.

Suppose (x0, y0) 6∈ Rc with x0, y0 > 0. By Lemma 3(a) we know that

(xn, yn) ∈ [0, b1) × [0, b2] for all n ≥ 1. Moreover, since (x0, y0) �se (x0, 0),

then T̃ n(x0, y0) �se T̃
n(x0, 0) for all n ≥ 1. Consequently, there must exist

an N ≥ 1 such that (xN , yN) ∈ [0, b2
c2

)× [0, b2]. Now, choose (u, v), (s, t) ∈ Rc

such that (u, v) �se (xN , yN) �se (s, t). Since T̃ is strongly competitive, we

have

T̃ n(u, v)�se T̃
n(xN , yN)�se T̃

n(s, t). (18)

Therefore, limn→∞ T̃
n(x0, y0) = E for all (x0, y0) 6∈ Rc. We have reached

the desired result that the basins of attraction for E,Ex and Ey are B(E) =

(0,∞)× (0,∞), B(Ex) = (0,∞)× {0} and B(Ey) = {0} × (0,∞).

(d) Let α1 < b1, b1 < α1 + b2c1, and b2 < c2(b1 − α1). In light of Lemma 4(d),

Theorem 1 of [4] guarantees that there exist the global stable and unstable

manifolds for E,Ws(E) andWu(E), respectively, with the above mentioned

properties. An immediate checking shows that Ey �se E �se Ex and that

the interior of the ordered interval JEy, EK is a subset of B(Ey), while the

interior of the ordered interval JE,ExK is a subset of B(Ex). Now, take any

point (x0, y0) ∈ R2
+ such that (x0, y0) ≺se Ws(E) (i.e. above Ws(E)). Then

(0, y0) �se (x0, y0) ≺se (xWs(E), y0), where (xWs(E), y0) ∈ Ws(E). By Lemma

3(c) and the monotonicity of T̃ , for n ≥ 1,

Ey = T̃ n((0, y0))�se T̃
n((x0, y0))�se T̃

n((xWs(E), y0)). (19)

Since limn→∞ T̃
n((xWs(E), y0)) = E, (19) implies that T̃ n((x0, y0)) enters the

ordered interval JEy, EK and so converges to Ey. In a similar way, one can

show that the ordered interval JE,ExK attracts all points below Ws(E), and

so all such points converge to Ex.
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(e) By Theorem 1 of [4], for each Et there exists the setWs(Et) passing through

Et and asymptotic to (0, 0), which is the graph of a continuous, nondecreasing

function and is exactly the basin of attraction of Et. The continuity of the

limiting equilibrium solution as a function of initial conditions follows as in

[5].

(f) The proof is similar to the proof of part (b) and will be omitted here.

2

Figure 5: Global dynamics of system (5).

Based on Figures 2 and 5, the global dynamics of systems (4) and (5) are

similar. However, the techniques of the proofs are different since the determinant

of the map corresponding to system (4) is identically zero in the first quadrant,

48



while the determinant of the map corresponding to (5) is positive and the map

satisfies (O+) condition. This condition greatly simplifies the proof for system

(5). The qualitative difference between system (1) and systems (4) and (5) is in

the case when b1 ≤ 1, b2 ≤ 1. In this case, E0(0, 0) is a globally asymptotically

stable equilibrium for system (1), the basin of attraction of the singular point

E0(0, 0) is an empty set for system (4), and the basin of attraction of the singular

point E0(0, 0) is the nonnegative part of the x-axis for system (5). Furthermore,

while system (4) always possesses two equilibrium solutions, systems (1) and (5)

possess only one equilibrium solution for all parameter regions.

2.5 Global Dynamics Scenarios for Competitive Systems

In this section we give some general results about the global dynamics of a

general competitive system (6). The proofs are analogous to the ones given in

Theorems 5 and 6 and will be ommited.

Theorem 7 Consider the competitive map T associated with system (6).

(a) Assume that T has a saddle fixed point Ex, locally asymptotically stable point

Ey, and either another repelling fixed point or a singular point E0, which is

a South-West corner of the region R and satisfies Ey �se E0 �se Ex. If T

has no period-two solutions, then every solution which starts off of the x-axis

converges to Ey and every solution which starts on the positive part of the

x-axis converges to Ex.

(b) Assume that T has a saddle fixed point Ey, locally asymptotically stable point

Ex, and either another repelling fixed point or a singular point E0, which is

a South-West corner of the region R and satisfies Ey �se E0 �se Ex. If T

has no period-two solutions, then every solution which starts off of the y-axis

converges to Ex and every solution which starts on the positive part of the
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y-axis converges to Ey.

(c) Assume that T has three fixed points Ex, Ey, E such that Ey �se E �se

Ex, where Ex, Ey are saddle points, and E is locally asymptotically stable.

Assume that T has either another repelling fixed point or a singular point E0,

which is a South-West corner of the region R and satisfies Ey �se E0 �se Ex.

If T has no period-two solutions, then every solution which starts in the

interior of R converges to E. Every solution which starts on the positive

part of the x-axis (resp. y-axis) converges to Ex (resp. Ey).

(d) Assume that T has three fixed points Ex, Ey, E such that Ey �se E �se Ex,

where Ex, Ey are locally asymptotically stable, and E is a saddle point. As-

sume that T has either another repelling fixed point or a singular point E0,

which is a South-West corner of the region R and satisfies Ey �se E0 �se Ex.

If T has no period-two solutions, then there exist the global stable and un-

stable manifolds Ws(E) and Wu(E) passing through E. The stable manifold

Ws(E) has one endpoint at E0 and is the graph of a continuous, nondecreas-

ing function. The unstable manifold Wu(E) has endpoints at Ex and Ey and

is the graph of a continuous, nonincreasing function. Every solution which

starts below (resp. above) the stable manifold Ws(E) converges to Ex (resp.

Ey). Every point which starts on Ws(E) \ {E0} converges to E.

(e) Assume that T has an infinite number of fixed points which belong to the arc

of a continuous decreasing curve C with end points Ex and Ey on the x and

y-axis respectively. Assume that T has either another repelling fixed point or

a singular point E0, which is a South-West corner of the region R . If T has

no period-two solutions, then every solution which starts in the first quadrant

belongs to exactly one nondecreasing, continuous curve Ws(EC) that crosses
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C at the point EC and either has an endpoint at E0 or is asymptotic to E0.

The dynamic behavior described in (a), (b), and (d) of Theorem 7 are called

competitive exclusion scenarios and the dynamic behavior described in (c) of The-

orem 7 is called a competitive coexistence scenario.
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Abstract

We consider the system of difference equations

xn+1 =
αxn

1 + β yn
, yn+1 =

γ xn yn
xn + δ yn

, n = 0, 1, 2, . . . ,

where α, β, γ, δ, x0, y0 are positive real numbers. This system was formulated by

P. H. Leslie in 1948 and the present manuscript provides the most complete dy-

namical analysis to date. A boundedness and persistence result along with global

attractivity results for various parameter regions are established. Numerical ev-

idence of chaotic behavior is also presented for solutions of the system in select

parameter regions.

3.1 Introduction

A host-parasitoid model is a type of prey-predator model where the devel-

opment of the attacking species (parasitoid) depends on the quantity of the food

species (host) made available to it and the population of the food species depends

on how many of its peers survived the infestation [1, 2]. A parasitoid is a term

that refers to a parasite that lives in an environment and lays eggs in the larvae or

pupae of the host population [1, 3]. Once a host is parasitized, it dies off but the

eggs of the parasitoid may continue to the next generation [1, 3]. Often parasitoids

are strategically used as biological pest control agents to kill off unwanted insect

populations and applications can be found in [1], [4], [5], and [6]. The general

framework for describing the dynamics of such a model is

xn+1 = a xn f(xn, yn), yn+1 = c xn (1− f(xn, yn)), n = 0, 1, 2, . . . , (1)

where xn and yn represent the size of the host and parasitoid populations in the nth

generation, respectively, and f(xn, yn) represents the fraction of hosts that survive

the parasitoid [2, 4]. Many authors have studied host-parasitoid models with the
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general form given in (1). See [7], [4], [3], [8], [9], [10], and [11] for an analysis of

such models.

Host-parasite models have a similar structure to that of host-parasitoid models

with the biggest difference being that the parasite may not kill the host [1, 12].

These models have attracted the attention of many authors in recent years and

several interesting systems are studied in [13], [14], [15], [16] and [17]. One host-

parasite model of particular interest, formulated in 1948 by P. H. Leslie, is given

by

N1(t+1) =
λ1N1(t)

1 + (λ1 − 1) N2(t)
K2

, N2(t+1) =
λ2N2(t)

1 + (λ2 − 1) K1N2(t)
K2N1(t)

, t = 0, 1, 2, . . . ,

(2)

where λ1, λ2 > 1 and K1, K2 are positive constants (see page 239 in [18]). The

quantity N1 represents the population of the host and N2 represents the population

of the parasite. An increase in the parasite population N2 results in a decrease

in the host population N1 and an increase in the ratio N2

N1
results in a decrease in

the parasite population as they lack resources to survive. See [18, 19] for more

information on (2). System (2) can be rewritten as

xn+1 =
αxn

1 + β yn
, yn+1 =

γ xn yn
xn + δ yn

, n = 0, 1, 2, . . . , (3)

where α, β, γ, δ, x0, y0 are positive real numbers.

System (3) has been studied by Q. Din and T. Donchev, who claim in Theorem

6 of [12] that when α, γ > 1 the unique positive equilibrium is a global attractor.

However, the proof in [12] is incorrect as we now explain. The analysis of system

(3) in [12] relies on Theorem 5 of [12], which is a result that appeared first as

Theorems 2.2.9 and 2.2.11 in the PhD thesis of M. Nurkanović [20]. Also see [21].

A generalization of these results is Theorem 3 in [22]. The result of Nurkanović

(or Theorem 3 of [22]) guarantees boundedness and persistence of solutions to (3)
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on sets [m1,M1]× [m2,M2] that are invariant under the map associated with the

system. The purported proof of Theorem 6 in [12] failed to verify that nontrivial

invariant sets [m1,M1] × [m2,M2] exist, and therefore global attractivity of the

equilibrium was not established. In fact, no such sets exist: if [m1,M1]× [m2,M2]

is an invariant subset of the positive quadrant of the plane, then by monotonicity

and invariance,

m1 ≤
αm1

1 + βM2

and
αM1

1 + β m2

≤M1 . (4)

From (4), one obtains 1 + βM2 ≤ α and α ≤ 1 + β m2, hence m2 = M2. A similar

calculation gives m1 = M1, and it follows that the invariant set consists of just one

point. Consequently, Nurkanović’s result cannot be used to prove that the positive

equilibrium in (3) is a global attractor. The present manuscript provides a proof,

among other things, of the global attractivity of the unique positive equilibrium as

well as the boundedness and persistence of solutions to system (3) under certain

parameter restrictions that include those considered by Din and Donchev. The

results in the coming sections provide the most complete analysis to date of model

(2) formulated by P. H. Leslie in 1948.

Before we state the main result of this paper, it is convenient to introduce the

change of variables

x′ =
β

δ
x , y′ = β y.

This change of variables allows for the elimination of the parameters β and δ, and

after renaming variables, system (3) is transformed to

xn+1 =
αxn

1 + yn
, yn+1 =

γ xn yn
xn + yn

, n = 0, 1, 2, . . . . (5)

An elementary calculation gives that a positive equilibrium for (5) exists if and

only if α > 1 and γ > 1. When this equilibrium exists, it is unique and given by

( x̄+ , ȳ+ ) :=

(
α− 1

γ − 1
, α− 1

)
. (6)
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It is worth pointing out that whenever the positive equilibrium (6) exists, it is

locally asymptotically stable. This can be seen from the characteristic polyno-

mial g(t) of the Jacobian matrix of the map associated with (5) evaluated at the

equilibrium (6), which is given by

g(t) = t2 + p t+ q = t2 − γ + 1

γ
t+

1 + (α− 1) γ

α γ
.

Rather than calculating the roots of g(t) explicitly, we proceed to verify the Schur-

Cohn condition for the roots of a quadratic polynomial to be inside of the unit

disk, namely |p| < q + 1 < 2 (see [23]). This inequality for the polynomial g(t)

becomes the relation (after some simplification) α < 1 + α γ − γ < α γ, which is

true for α > 1, γ > 1. Thus (6) is locally asymptotically stable.

The main result of this paper is Theorem 1, which is presented below.

Theorem 1 Assume α, γ are arbitrary positive real numbers. Then system (5)

has a positive equilibrium ( x̄+ , ȳ+ ) if and only if α > 1 and γ > 1. If it exists,

the positive equilibrium is unique and given by (6). For arbitrary positive numbers

x0 and y0, let {(xn, yn)} be given by (5). Then the following statements are true:

(i) If α < 1, then (xn, yn)→ (0, 0).

(ii) If α = 1 and γ < 1, then yn → 0 and there exists x̄ ≥ 0 such that {xn} is

monotonically decreasing and converges to x̄.

(iii) If α = 1 and γ ≥ 1, then (xn, yn)→ (0, 0).

(iv) If α > 1 and γ < 1, then xn →∞ and yn → 0.

(v) If α > 1 and γ = 1, then xn →∞ and, for some ȳ ≥ 0, yn → ȳ.

(vi) If 1 < α ≤ γ, then (xn, yn) → ( x̄+ , ȳ+ ). Furthermore, the positive equilib-

rium ( x̄+ , ȳ+ ) is globally asymptotically stable on (0,∞)× (0,∞).
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(vii) If 1 < γ < α, the sequence {(xn, yn)} is bounded and persistent in (0,∞) ×

(0,∞).

The seven dynamical scenarios described in Theorem 1 are depicted in Figure

6, where the various parameter regions are labelled according to the long-term

behavior of solutions {(xn, yn)} of system (5).

1

1

0 α

γ

(0, 0)

(0, 0)

(∞, ȳ)

(x̄, ȳ)

B. & P.

(∞, 0)(x̄, 0)

Figure 6: Parameter space regions. Here “B. & P.” stands for bounded and persistent
orbits, (x̄, ȳ) stands for orbits converge to a unique positive equilibrium, (x̄, 0) stands for
orbits converge to a point on the x-axis, and so on.

Some comments are in order regarding the dynamics of the solutions to system

(5) for the parameter region 1 < γ < α. Statement (vii) of Theorem 1 states that

orbits are bounded and persistent in this case. While this is true, there is also

numerical evidence of chaotic behavior for some parameter values in this parameter

region. Figures 7 and 8 depict this chaotic behavior for specific choices of α and γ.

It is not known to the authors if chaos is a feature of a substantial portion of the

systems associated with the parameter set 1 < γ < α. It is important to note that

the arguments used to prove the boundedness and persistence of the solutions of

system (5) are not affected by the presence of chaotic orbits.
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Figure 7: A plot of the orbit of (8, 8), for α = 9999, γ = 2. Numerical calculations
suggest (xn, yn) → (x̄, ȳ) = (9000, 9000). In plot (a), the equilibrium (9000, 9000) is
shown as a black dot. Plot (b) shows a smaller window, where some lune-shaped re-
gions apparently devoid of points can be seen. One such region seems to contain the
point (3500, 1900), which is marked with the symbol +. A total of 300 000 points were
generated for these plots.
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Figure 8: The orbit of (3500, 1900), for α = 9999, γ = 2 seems to be a subset of
10 connected compact sets, none of which contains the unique positive equilibrium.
Compare to Figure 7. The positive equilibrium (9000, 9000) is shown as an isolated dot.
A total of 60 000 points were generated for this plot.
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The remaining sections of this paper present the proofs for statements (i)

through (vii) of Theorem 1. The proofs of statements (i) through (v) regarding

the global behavior of solutions to (5) in the absence of a positive equilibrium

are done with elementary arguments and are presented in Section 3.2. The proof

of statement (vi) regarding the global attractivity of the positive equilibrium is

presented in Section 3.3. In this case, we utilize a family {Pµ : µ > 0 } of compact

neighborhoods of the positive equilibrium that cover the positive quadrant. In

[24], the sets Pµ are termed balls of the Kobayashi internal metric on the cone (in

this case the cone is the nonnegative quadrant). The sets Pµ are invariant under

the map associated with the system and have the property that the ω-limit set

is a singleton set, consisting of the positive equilibrium. Thus a proof of global

asymptotic stability of the positive equilibrium is obtained when 1 < α ≤ γ.

A unique positive equilibrium also exists when 1 < γ < α, but the sets Pµ

used in part (vi) fail to have desired properties and another approach is needed to

establish boundedness and persistence. The proof of statement (vii) regarding the

boundedness and persistence of solutions is presented in Section 3.4. We introduce

a useful change of coordinates to treat the problem in the whole plane. The

subsequent proof is based on the construction of a family of compact sets Kτ . We

show that for large enough τ , the sets Kτ are invariant under the associated map

and the collection forms a cover of the plane. Compared to the construction of Pµ,

the construction of Kτ is significantly more involved, as it requires the introduction

of auxiliary maps and certain curves that are invariant for those auxiliary maps.

3.2 Global Behavior in the Absence of a Positive Equilibrium

This section presents a proof of statements (i) through (v) of Theorem 1.

Suppose first that α ≤ 1. Choose arbitrary positive real numbers x0 and y0 . With
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(xn, yn) given by (5) for n > 0, we have

xn+1 =
αxn

1 + yn
< αxn ≤ xn for all n ≥ 0, (7)

and thus

xn converges to a nonnegative real number x̄. (8)

Assume α < 1. If x̄ > 0, then yn → α − 1 by (7), which is impossible for α < 1.

Therefore xn → 0 as n → ∞. From (5), yn → 0 as n → ∞ and statement (i)

follows.

If α = 1, then there is a continuum of equilibrium points on the extended

domain (0,∞)× [0,∞), consisting of points of the form (x, 0) where x > 0. With

α = 1, we consider three cases: γ < 1, γ = 1, and γ > 1.

α = 1, γ < 1: From (5), yn+1 < γ yn, thus {yn} is decreasing and convergent

to some ȳ ≥ 0. If ȳ > 0, then from (5),

xn =
yn+1 yn

γ yn − yn+1

→ ȳ2

γ ȳ − ȳ
=

ȳ

γ − 1
. (9)

The last term in (9) is negative. This implies that ȳ = 0. From this and (8) we

conclude xn → x̄ > 0 and yn → 0. Statement (ii) follows.

α = 1, γ = 1: We have yn+1 = xn yn
xn+yn

< yn, therefore {yn} is a decreasing

sequence that converges to some ȳ ≥ 0. From xn+1(1+yn) = xn, we have x̄ (1+ȳ) =

x̄. It follows that if x̄ > 0, then ȳ = 0. But if x̄ = 0, yn+1(xn + yn) = xn yn implies

ȳ (0 + ȳ) = 0 ȳ = 0, that is, ȳ = 0. Therefore (xn, yn)→ (x̄, 0) for some x̄ ≥ 0. We

claim that x̄ = 0. Suppose x̄ > 0. Consider the map R associated with (5) when

α = γ = 1:

R(x, y) :=

(
x

1 + y
,
x y

x+ y

)
, (x, y) ∈ (0,∞)× (0,∞).

The map R has a real analytic extension R̃ to a neighborhood N ⊂ R2 of (x̄, 0). It

is shown in [25] that if N is small enough, then for every point (x, y) ∈ N \{(x̄, 0)}
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there exists n > 0 such that R̃n(x, y) 6∈ N . This contradicts xn → x̄, so x̄ = 0. We

conclude xn → 0 and yn → 0.

α = 1, γ > 1: We claim x̄ = 0. Suppose this is not the case, i.e. x̄ > 0. Then

1 + yn = xn
xn+1
→ 1, so yn → 0. Also,

yn+1

yn
=

γ xn
xn + yn

→ γ > 1,

which implies yn 6→ 0. This contradicts the assumption, hence xn → 0. We have,

yn+2 =
γ xn+1 yn+1

xn+1 + yn+1

=
γ xn yn+1

(1 + yn)(xn+1 + yn+1)
<

γ xn
1 + yn

< γ xn .

Therefore, yn → 0 and statement (iii) follows.

Now, suppose that α > 1 and γ < 1. Using system (5),

yn+1 =
γ xn yn
xn + yn

<
γ xn yn
xn

= γ yn for all n ≥ 0,

and thus yn → 0 as n → ∞. Furthermore, since α > 1, there exists N > 0 and

A > 1 such that α
1+yn

> A for all n ≥ N . Then,

xn+1 =
αxn

1 + yn
> Axn , n ≥ N . (10)

Consequently, xn →∞ as n→∞ and statement (iv) follows.

If α > 1 and γ = 1, we have

yn+1 =
xn yn
xn + yn

< yn for all n ≥ 0.

Thus there exists ȳ ≥ 0 such that yn ↓ ȳ. If ȳ = 0, then from (10), xn → ∞. If

ȳ > 0, then from (5), xn (yn − yn+1) = yn+1 yn for n ≥ 0. As n → ∞, yn+1 yn →

ȳ2 > 0, which implies xn →∞ and statement (v) follows. 2
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3.3 Global Attractivity of the Positive Equilibrium

This section provides a proof of statement (vi) of Theorem 1. Throughout the

section we assume that 1 < α ≤ γ. Under this assumption, there exists a unique

positive equilibrium (6) for system (5). Furthermore, the change of variables

x′ =

(
α− 1

γ − 1

)
1

x
, y′ = (α− 1)

1

y

conjugates system (5) to

xn+1 = a xn + (1− a)
xn
yn
, yn+1 = (1− b)xn + b yn, n = 0, 1, 2, . . . , (11)

where the parameters a and b are

a =
1

α
and b =

1

γ
. (12)

The map associated with (11) on the positive quadrant is given by

S(x, y) =

(
a x+ (1− a)

x

y
, (1− b)x+ b y

)
, (x, y) ∈ (0,∞)× (0,∞) . (13)

The assumption 1 < α ≤ γ is equivalent to

0 < b ≤ a < 1, (14)

in which case the map S has a unique positive fixed point, namely (1, 1). We

shall prove statement (vi) of Theorem 1 by proving a similar result for (11) under

assumption (14). For µ > 1, let

Pµ := { (x, y) : 1
µ
≤ x ≤ µ , 1

µ
≤ y ≤ µ , 1

µ
x ≤ y ≤ µx } .

The sets P2 and P4 can be seen in Figure 9. Note that for each µ > 1, the set Pµ

is the convex hull of the points

P1 = (µ, µ), P2 = (1, µ), P3 = ( 1
µ
, 1), P4 = ( 1

µ
, 1
µ
), P5 = (1, 1

µ
), P6 = (µ, 1) . (15)

Some properties of the sets Pµ are given in Proposition 1 below.
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Figure 9: (a) The sets P2 and P4. (b) The boundary of a set Pµ (solid) and its
image S(∂Pµ) (dashed).

Proposition 1 The following statements are true:

(i) (1, 1) ∈ Pµ for each µ > 1.

(ii) ∪{Pµ : µ > 1} = (0,∞)× (0,∞).

(iii) For every (x, y) 6= (1, 1) there exists ν > 1 such that (x, y) ∈ ∂Pν.

(iv) S(Pµ) ⊂ Pµ for each µ > 1.

(v) S2(Pµ) ⊂ int(Pµ) for each µ > 1.

Statements (i) through (iii) of Proposition 1 are obviously true, so here we

only prove (iv) and (v). Before we do so, we state a corollary to Proposition 1 that

is equivalent to statement (vi) of Theorem 1.

Corollary 3 For every (x, y) ∈ (0,∞)× (0,∞), Sn(x, y)→ (1, 1).

Proof. If (x, y) ∈ (0,∞) × (0,∞), then (ii) of Proposition 1 implies (x, y) ∈ Pµ

for some µ > 1. By (iv) of Proposition 1, Sn(x, y) ∈ Pµ for all n ≥ 1. In

particular, {Sn(x, y)} has at least one accumulation point (x̄, ȳ). If ν > 1 is such
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that (x̄, ȳ) ∈ ∂Pν , then by continuity of S and by (iv) and (v), Sn(x, y) ∈ int(Pν)

for all n sufficiently large. This is not possible since (x̄, ȳ) is an accumulation point

of {Sn(x, y)}. Thus (x̄, ȳ) ∈ int(Pν) for every ν > 1, and by (iii), (x̄, ȳ) = (1, 1).

Since (1, 1) is the only accumulation point of the bounded sequence {Sn(x, y)}, it

follows that Sn(x, y)→ (1, 1). 2

Now, for the proof of (iv) and (v) of Proposition 1, let µ > 1 be fixed but

arbitrary, and let P1, . . . P6 be the extreme points or vertices of Pµ given in (15).

We claim first that

S(P`) ∈ Pµ for 1 ≤ ` ≤ 6. (16)

From (13) and (15),

S(P1) = S(µ, µ) = (1 + a (µ− 1), µ) ∈ [P1, P2],

S(P3) = S
(

1
µ
, 1
)

=
(

1
µ
, 1
µ

+ b
(
µ−1
µ

))
∈ [P3, P4],

S(P4) = S
(

1
µ
, 1
µ

)
=
(

1 + a
(

1−µ
µ

)
, 1
µ

)
∈ [P4, P5],

S(P6) = S (µ, 1) = (µ, µ+ b (1− µ)) ∈ [P6, P1].

Furthermore, S(P2) = S(1, µ) = (a+ 1−a
µ
, 1 + b (µ− 1)) and it can be readily seen

that the following inequalities are true:

1
µ
≤ a+ 1−a

µ
≤ µ , 1

µ
≤ 1 + b(µ− 1) ≤ µ , 1

µ
(a+ 1−a

µ
) ≤ 1 + b(µ− 1) ≤ µ (a+ 1−a

µ
).

That is, S(P2) ∈ Pµ. Finally,

S(P5) = S
(

1, 1
µ

)
=
(
a (1− µ) + µ, b

(
1−µ
µ

)
+ 1
)
,

and one can similarly conclude that S(P5) ∈ Pµ. Thus (16) has been established.

To prove (iv), it is sufficient to prove S(∂Pµ) ⊂ Pµ. We have

S([P1, P2]) =
{(

(a (µ−1)+1)((µ−1) t+1)
µ

, b (µ− µ t+ t− 1) + (µ− 1) t+ 1
)

: 0 ≤ t ≤ 1
}
.

Hence S([P1, P2]) is a line segment with endpoints in the set Pµ, which is convex.

Therefore, S([P1, P2]) ⊂ Pµ. Similar considerations lead to S([P2, P3]) ⊂ Pµ,

S([P4, P5]) ⊂ Pµ, and S([P5, P6]) ⊂ Pµ.
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For 0 ≤ t ≤ 1, let x(t) and y(t) be defined by the equation

(x(t), y(t)) := S ( (1− t)P3 + t P4 ) =

(
µ+ at− a µ t
µ (µ+ t− µ t)

,
1 + b (−1 + µ+ t− µ t)

µ

)
.

Then S([P3, P4]) = {(x(t), y(t)) : 0 ≤ t ≤ 1 }, and for 0 ≤ t ≤ 1,

dx

dt
=

(1− a)(µ− 1)

(µ+ t− µ t)2
> 0 and

dy

dt
=
b (1− µ)

µ
< 0. (17)

Hence, from (16) and (17), S([P3, P4]) ⊂ [ 1
µ
, 1]×[ 1

µ
, 1] and we conclude S([P3, P4]) ⊂

Pµ. A similar proof (omitted here) yields S([P6, P1]) ⊂ Pµ. This completes the

proof of (iv).

For part (v), from the proof of part (iv), if (x, y) ∈ Pµ, then S(x, y) ∈ ∂Pµ

only when (x, y) ∈ {P1, P3, P4, P6}, and otherwise S(x, y) ∈ int(Pµ) and S2(x, y) ∈

int(Pµ). In addition, for 1 ≤ ` ≤ 6, S(P`) 6∈ {P1, P3, P4, P6}, so S2(P`) ∈ int(Pµ).

It follows that S2(Pµ) ⊂ int(Pµ). 2

3.4 Boundedness and Persistence of Solutions

A proof of boundedness and persistence of solutions of system (5) for 1 < γ <

α is presented in this section, which corresponds to statement (vii) of Theorem 1.

3.4.1 Structure of the Proof of Statement (vii) of Theorem 1

Throughout the section we shall assume the inequality

1 < γ < α. (18)

Under this assumption, there exists a unique positive equilibrium (6) for system

(5). The change of variables

x′ =

(
α− 1

γ − 1

)
1

x
, y′ =

(
1

α− 1

)
y

conjugates system (5) to

xn+1 = a xn + (1− a)xn yn, yn+1 =
yn

(1− b)xn yn + b
, n = 0, 1, 2, . . . , (19)
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where a and b are as in (12). The map corresponding to (19) is given by

T (x, y) =

(
a x+ (1− a)x y ,

y

(1− b)x y + b

)
, (x, y) ∈ (0,∞)× (0,∞). (20)

Assumption (18) becomes

0 < a < b < 1, (21)

in which case the map T has a unique positive fixed point, namely (1, 1). We shall

prove (vii) of Theorem 1 by proving a similar statement for (19) under assumption

(21).

It is useful to consider logarithmic coordinates. Denote with L and E the

planar maps defined for (x, y) ∈ (0,∞)× (0,∞) and (u, v) ∈ R2, respectively, by

L(x, y) := ( ln(x) , ln(y) ) and E(u, v) := ( eu , ev ). (22)

Set T̂ := L ◦ T ◦ E. That is,

T̂ (u, v) =

(
ln( a eu + (1− a) eu+v ) , ln

(
ev

(1− b) eu+v + b

))
, (u, v) ∈ R2 .

(23)

Thus T̂ is a conjugate of T for which the origin is the (unique) fixed point. An

immediate consequence of the definition of T̂ is Proposition 2 presented below.

Proposition 2 Let (x, y) be an arbitrary element of (0,∞) × (0,∞). Then the

sequence {T n(x, y)} is bounded and persists in (0,∞) × (0,∞) if and only if

{T̂ n(L(x, y) )} is bounded in R2.

It can also be shown that bounded subsets of R2 are contained in T̂ -invariant

compact sets, as described in Proposition 3.

Proposition 3 Suppose 0 < a < b < 1. Then for any bounded set B ⊂ R2 there

exists a T̂ -invariant compact set K such that B ⊂ K.
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Propositions 2 and 3 have the following corollary, which is precisely statement

(vii) of Theorem 1.

Corollary 4 Let (x, y) be an arbitrary element of (0,∞) × (0,∞). Then the se-

quence {T n(x, y)} is bounded and persists in (0,∞)× (0,∞).

The remainder of this section is devoted to proving Proposition 3. The proof

involves constructing a family of compact sets Kτ that satisfy the properties set

forth in Proposition 3 for τ taken to be sufficiently large. First, we present basic

results about T and T̂ as well as results related to two auxiliary maps that are

useful in the construction of Kτ and for the arguments that follow.

3.4.2 Ancillary Properties and Maps

If F = (f1, f2) is a map on a planar region R, the equilibrium curves of F

are the sets {(x, y) ∈ R : f1(x, y) = x} and {(x, y) ∈ R : f2(x, y) = y}. The

equilibrium curves of the maps T and T̂ given in (20) and (23) play a prominent

role in our proof. Before we go any further, we adopt the following convention in

order to simplify notation use:

unless otherwise restricted, (x, y) ∈ (0,∞)× (0,∞) and (u, v) ∈ R2.

The equilibrium curves of the maps T are as follows:

C1 := {(x, y) : y = 1} and C2 := {(x, y) : x y = 1}.

The equilibrium curves C1 and C2 have (1, 1) as their only common point, and

the complement in the positive quadrant of their union consists of four disjoint

connected components

R1 = {(x, y) : y > 1 and x y > 1}, R2 = {(x, y) : y > 1 and x y < 1},
R3 = {(x, y) : y < 1 and x y < 1}, R4 = {(x, y) : y < 1 and x y > 1}.
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That is,

(0,∞)× (0,∞) \ (C1 ∪ C2) =
⋃
{R` : 1 ≤ ` ≤ 4}.

Similarly, the equilibrium curves of the map T̂ are

Ĉ1 := {(u, v) : v = 0} and Ĉ2 := {(u, v) : u+ v = 0} .

The curves Ĉ1 and Ĉ2 have (0, 0) as their only common point, and the complement

in the plane of their union consists of four disjoint connected components

R̂1 = {(u, v) : v > 0 and u+ v > 0}, R̂2 = {(u, v) : v > 0 and u+ v < 0},
R̂3 = {(u, v) : v < 0 and u+ v < 0}, R̂4 = {(u, v) : v < 0 and u+ v > 0}.

That is,

R2 \ (Ĉ1 ∪ Ĉ2) =
⋃
{R̂` : 1 ≤ ` ≤ 4}.

The sets R` and R̂`, 1 ≤ ` ≤ 4, are depicted in Figure 10. Now, denote with

�se the South-East partial order on R2 whose nonnegative cone is the standard

fourth quadrant {(u, v) : u ≥ 0, v ≤ 0}. That is, (u1, v1) �se (u2, v2) if and only

if u1 ≤ u2 and v1 ≥ v2. Similarly, denote with �ne the North-East partial order

on R2 whose nonnegative cone is the standard first quadrant {(u, v) : u, v ≥ 0}.

That is, (u1, v1) �ne (u2, v2) if and only if u1 ≤ u2 and v1 ≤ v2 (see [26]). Basic

monotonicity properties can then be used to prove Proposition 4.

Proposition 4 The following statements are true:
(i) (x, y) �se T (x, y) for (x, y) ∈ R1 (i′) (u, v) �se T̂ (u, v) for (u, v) ∈ R̂1

(ii) (x, y) �ne T (x, y) for (x, y) ∈ R2 (ii′) (u, v) �ne T̂ (u, v) for (u, v) ∈ R̂2

(iii) T (x, y) �se (x, y) for (x, y) ∈ R3 (iii′) T̂ (u, v) �se (u, v) for (u, v) ∈ R̂3

(iv) T (x, y) �ne (x, y) for (x, y) ∈ R4 (iv′) T̂ (u, v) �ne (u, v) for (u, v) ∈ R̂4

We shall need the maps

M(x, y) :=

(
a x ,

y

(1− b)x y + b

)
, (x, y) ∈ (0,∞)× (0,∞),

and

N(x, y) :=

(
(1− a)x y ,

1

b
y

)
, (x, y) ∈ (0,∞)× (0,∞),
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Figure 10: Equilibrium curves and complementary regions for T and T̂ , respec-
tively.

along with the corresponding conjugate maps M̂ and N̂ on R2 given in terms of

the maps from (22) by

M̂ := L ◦M ◦ E and N̂ := L ◦N ◦ E.

To prove the boundedness and persistence of the solutions of system (19), it

is important to understand the behavior of the solutions for small values of x and

y. Close inspection of the map in (20) reveals that T behaves similarly to the map

M for values of y close to zero and T behaves similarly to the map N for values

of x close to zero. In this way, M and N offer valuable insight into the behavior

of solutions of system (19). In Lemmas 1 and 3 that follow, it is proven that there

exist invariant curves for the maps M̂ and N̂ in R̂2 and R̂3, respectively. These

curves have important properties when related to the map T̂ and play a role in

the definition of the family of compact sets Kτ needed for the proof of Proposition

3. Lemma 2 gives a property of the image of certain line segments in R̂3. This is

useful when proving the invariance of the sets Kτ that are constructed.
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We shall need the constant r given by

r :=
ln(b)

ln(a)
. (24)

Under assumption (21), r satisfies

0 < r < 1. (25)

Lemma 1, given below, details an invariant curve corresponding to the map

M̂ along with properties of its image under T̂ .

Lemma 1 Let τ be a fixed but otherwise arbitrary positive real number. Let f̂1 :

(−∞, τ ]→ R be the function given by

f̂1(u) = − ln
(
eτ
(
er(u−τ) + 1−b

b−a

(
er(u−τ) − eu−τ

) ) )
. (26)

and let D̂1 and D̂′1 be the sets

D̂1 :=
{

(u, v) ∈ R2 : v = f̂1(u), u ≤ τ
}
,

D̂′1 :=
{

(u, v) ∈ R2 : v = f̂1(u), 0 ≤ u ≤ τ, v ≤ 0
}
.

Then f̂1(·) is a convex smooth function,

M̂(D̂1) ⊂ D̂1, and T̂ (D̂′1) ⊂
{

(u, v) ∈ R2 : f̂1(u) < v < 0, u < τ
}
. (27)

Figure 11 shows the curve D̂′1 described in Lemma 1 along with its im-

age under the map T̂ . An extension of D̂′1 and its corresponding image

in the third quadrant are also included to illustrate the relation T̂ (D̂′1) ⊂{
(u, v) ∈ R2 : f̂1(u) < v < 0, u < τ

}
, which is needed in the arguments used in Sec-

tion 3.4.4.

Proof. A straightforward calculation gives

f̂ ′′1 (u) =
(1− a)(1− b)(r − 1)2e−rτ+ru+τ+u

((1− b)eu − (1− a)er(u−τ)+τ )
2 ,
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Figure 11: The curve D̂′1 (thick, solid) and its image under T̂ (thick, dashed)

along with an extension of D̂′1 (thin, solid) and its image under T̂ (thin, dashed).

so f̂ ′′1 (u) is well defined and positive for u ≤ τ + 1
r−1 ln( 1−b

1−a). This inequality,

together with (21) and (25), imply that f̂ ′′1 (u) is defined for u ≤ τ , and consequently

v is a convex function of u for u ≤ τ .

With the change of coordinates x = eu, y = ev, together with x0 := eτ and

D1 :=
{

(x, y) : 1
x0 y

= ( x
x0

)r + 1−b
b−a

(
( x
x0

)r − x
x0

)
, x ≤ eτ

}
,

the inclusion M(D1) ⊂ D1 is equivalent to M̂(D̂1) ⊂ D̂1. We prove the former.

Suppose (x, y) ∈ D1, and set

(x′, y′) := M(x, y) =

(
a x,

y

(1− b)x y + b

)
.

Then (x′, y′) ∈ D1 if and only if x′ ≤ eτ and

(1− b)x y + b

x0 y
=

(
a x

x0

)r
+

1− b
b− a

((
a x

x0

)r
− a x

x0

)
. (28)

Through algebraic manipulation, equation (28) may be rewritten as

b

x0 y
= −(1− b) x

x0
+

(
a x

x0

)r
+

1− b
b− a

((
a x

x0

)r
− a x

x0

)
. (29)

The equality ar = b and further simplification in (29) give the equation

1

x0 y
=

(
x

x0

)r
+

1− b
b− a

(
x

x0

)r
− 1− b
b− a

(
x

x0

)
. (30)
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Since by assumption (x, y) ∈ D1, we have (30) is true. It is also the case that

x′ = a x ≤ a eτ < eτ . This proves (x′, y′) ∈ D1.

To prove the second inclusion in (27), consider (u, v) ∈ D̂′1, and set (u′, v′) =

M̂(u, v) and (u′′, v′′) = T̂ (u, v). Thus (u′, v′) ∈ D̂1. From the definition of M̂ and

T̂ we have

u′ < u′′ and v′ = v′′ . (31)

Consider the function ψ(t) with t ≤ τ , given by

ψ(t) = er(t−τ) +
1− b
b− a

(
er(t−τ) − et−τ

)
.

Since (u′, v′) ∈ D̂1 then v′ = f̂1(u
′) = − ln(eτ ψ(u′)). Therefore, e−τ−v

′
= ψ(u′).

This fact, (31), and the increasing character of ψ give

e−τ−v
′′

= e−τ−v
′
= ψ(u′) < ψ(u′′) . (32)

Inequality (32) implies f̂1(u
′′) < v′′, which together with

v′′ = ln

(
ev

(1− b) eu+v + b

)
< 0,

complete the proof of the second inclusion in (27). See Figure 11. 2

Lemma 2, given below, details a property of the image under T̂ of certain line

segments.

Lemma 2 Let p and q be arbitrary negative numbers such that q
p
< r, where r is

defined in (24). Let D̂2 be the line in the plane through (p, 0) and (0, q), and let D̂′2

be the line segment whose endpoints are (p, 0) and (0, q). Then T̂ (D̂′2) is a subset

of the connected component of R2 \ D̂2 that contains the origin.

Proof. For u ≤ 0, v < 0, consider the real valued function

φ(u, v) := − ln((1− b)eu+v + b)

ln(a+ (1− a)ev)
.
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Figure 12: The curve D̂′2 (solid) and its image under T̂ (dashed)

We claim

φ(u, v) ≤ − ln(b)

ln(a)
= −r, u ≤ 0, v < 0. (33)

It can be easily shown that for fixed v ≤ 0, φ(u, v) is increasing in u. Therefore,

it is sufficient to verify (33) for φ(0, v). Equivalently, with y := ev, we will verify

that f(y) ≤ −r for all y ∈ (0, 1), where

f(y) = − ln((1− b)y + b)

ln(a+ (1− a)y)
.

Notice,

t+ ln(1− t) < 0 for t ∈ (0, 1). (34)

Therefore, for r ∈ (0, 1) and y ∈ (0, 1),

∂

∂r

[
((1− ar) y + ar) ln((1− ar) y + ar)

1− ar

]
=
ar ln(a)((1− ar)(1− y) + ln(1− (1− ar)(1− y)))

(1− ar)2
> 0, (35)

where (34) was used with t = (1− ar)(1− y) to conclude (35). The inequality in

(35), along with b = ar from (24), imply

((1− b) y + b) ln((1− b) y + b)

1− b
=

((1− ar) y + ar) ln((1− ar) y + ar)

1− ar

<
((1− a) y + a) ln((1− a) y + a)

1− a
. (36)
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It follows from (36) that for all y ∈ (0, 1),

d

dy
[f(y)] =

(1−a) ln((1−b)y+b)
(1−a)y+a − (1−b) ln((1−a)y+a)

(1−b)y+b

(ln((1− a)y + a))2
< 0.

Consequently, f(y) ≤ f(0) = − ln(b)
ln(a)

= −r, and statement (33) is established. Now,

assume (u, v) ∈ D̂′2. Since

T̂ (u, v)− (u, v) =
(

ln(a+ (1− a) ev) , − ln( (1− b) eu+v + b )
)
, (37)

the slope of the line through (u, v) and T̂ (u, v) is precisely φ(u, v). By Proposition

4, T (u, v) �se (u, v). From the latter relation, (33), (37), and the hypothesis on

the slope of D̂2, namely − q
p

being greater than −r, it follows that T̂ (u, v) and (0, 0)

belong to the same component of R2 \ D̂2. The curve D̂′2 and its image under T̂

can be seen in Figure 12. 2

The final lemma in this subsection details an invariant curve corresponding

to the map N̂ along with properties of its image under T̂ . Prior to stating the

lemma, we verify that

T̂ ({(u, v) : u+ v ≥ 0, u ≤ 0, v > 0}) ⊂ R̂1. (38)

Consider (u, v) ∈ {(s, t) : s+ t ≥ 0, s ≤ 0, t > 0} such that u+ v = 0 and notice

T̂ (u, v) = (ln(a eu + (1− a)), v). (39)

Since u < 0 implies ln(a eu + (1− a)) > u, it follows from (39) that T̂ (u, v) ∈ R̂1.

Similarly, consider (u, v) ∈ {(s, t) : s + t ≥ 0, s ≤ 0, t > 0} such that u = 0 and

notice

T̂ (u, v) =

(
ln(a+ (1− a)ev), ln

(
ev

(1− b)ev + b

))
.

Since v > 0, T̂ (u, v) is in the first quadrant of the plane and thus belongs to R̂1.

By continuity of T̂ , (38) follows. This relation will be helpful in proving Lemma 3

below.
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Lemma 3 Let c0 be a fixed but otherwise arbitrary negative real number, and set

c1 := −1
2
− ln(1−a)

ln(b)
and c2 := − 1

2 ln(b)
. (40)

Let D̂3 and D̂′3 be the sets

D̂3 := { (u, v) ∈ R2 : u = c2 v
2 + c1 v + c0 },

D̂′3 := D̂3 ∩ {(u, v) : u ≤ 0, v ≥ 0}.

Then,

N̂(D̂3) ⊂ D̂3 and T̂ (D̂′3) ⊂ { (u, v) : u > c2 v
2 + c1 v + c0 , v > 0} . (41)

Figure 13 shows the curve D̂′3 described in Lemma 3 along with its image under

the map T̂ and illustrates the relation T̂ (D̂′3) ⊂ { (u, v) : u > c2 v
2 + c1 v+ c0 , v >

0}.

T
`

HD '3
`

LD '3
`

Figure 13: The curve D̂′3 (solid) and its image under T̂ (dashed)

Proof. Let (u, v) ∈ D̂3 (i.e. u = c2 v
2 + c1 v + c0) and set

(u′, v′) := N̂(u, v) =
(
ln((1− a) eu+v) , ln(1

b
ev)
)
. (42)

Then,

c2 (v′)2 + c1 v
′ + c0

= c2 ( v − ln(b) )2 + c1 ( v − ln(b) ) + c0

= c2 v
2 − 2 c2 (ln(b)) v + c2 (ln(b))2 + c1 v − c1 ln(b) + c0

= u− 2 c2 (ln(b)) v + c2 (ln(b))2 − c1 ln(b).

(43)
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A straightforward calculation using (40) gives

−2 c2 (ln(b)) = 1 and c2 (ln(b))2 − c1 ln(b) = ln(1− a) . (44)

Consequently, from (42), (43) and (44) we have

c2 (v′)2 + c1 v
′ + c0 = u+ v + ln(1− a) = ln( (1− a) eu+v ) = u′.

This proves the first relation in (41). To prove the second relation in (41), let

(u, v) ∈ D̂′3. Since 0 ≤ v ≤ q2 and u ≤ 0,

(1− b)eu+v + b < max{eu+v, 1} ≤ max{ev, 1} = ev,

and it follows that

ln

(
ev

(1− b)eu+v + b

)
> 0.

Consequently, T̂ (u, v) ∈ {(s, t) : t > 0}. Now, define

Q− := {(u, v) ∈ D̂′3 : u+ v ≤ 0} and Q+ := {(u, v) ∈ D̂′3 : u+ v > 0}. (45)

Clearly, D̂′3 = Q− ∪ Q+. We consider two cases separately. If (u, v) ∈ Q+, then

by Proposition 4 we have (u, v) �se T̂ (u, v). Combining this with (38), it follows

that T̂ (u, v) ∈ { (s, t) : s > c2 t
2 + c1 t + c0 , t > 0}. If now (u, v) ∈ Q−, then by

Proposition 4, (u, v) �ne T̂ (u, v). Also, note that for x := eu and y := ev,

T (x, y)−N(x, y) =

(
a x ,− (1− b)x y

b( (1− b)x y + b )

)
.

Hence N(x, y) �se T (x, y), which implies N̂(u, v) �se T̂ (u, v). Now, N̂(u, v) ∈ D̂3

by the first part of this proof and the relation T̂ (u, v) ∈ { (s, t) : s > c2 t
2 + c1 t +

c0 , t > 0} follows. The curve D̂′3 along with its image under T̂ can be seen in

Figure 13. 2
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3.4.3 Construction of a Family of Compact Sets

We begin by establishing some useful inequalities. We shall need the following

values, which can be obtained from equation (26):

f̂1(0) = ln

(
(b− a)eτ(r−1)

(b− a) + (1− b)(1− eτ(r−1))

)
(46)

and

f̂ ′1(0) = −1− b− (1− a) r eτ (1−r)

1− b− (1− a) eτ (1−r)
. (47)

Lemma 4, presented below, is easily established from relations (21), (25), (46)

and (47).

Lemma 4 There exists τ1 > 0 such that

f̂1(0) < 0 , for τ ≥ τ1,

and

f̂ ′1(0) < 0 , for τ ≥ τ1.

The sets Kτ are introduced next.

Definition 7 Let τ ∈ R+ be such that τ ≥ τ1 with τ1 as in Lemma 4, and set

q1 := f̂1(0) , (48)

p2 := − f̂1(0)

f̂ ′1(0)
, and

q2 :=
−c1 +

√
c12 − 4 c2 p2
2 c2

, (49)

where f̂1(0), f̂ ′1(0), c1 and c2 are given in (40), (46), and (47). Let the set Kτ be

the convex hull of the sets D̂′`, 0 ≤ ` ≤ 4, where

D̂′0 is the line segment joining (τ, 0) and (τ,−τ).

D̂′1 is the curve given in Lemma 1 with endpoints (τ,−τ) and (0, q1).

D̂′2 is the line segment with endpoints (0, q1) and (p2, 0).

D̂′3 is the parabolic arch in Lemma 3 with endpoints at (p2, 0) and (0, q2).

D̂′4 is the line segment with endpoints (0, q2) and (τ, 0).
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Remark 1 In Definition 7, q1 < 0 and p2 < 0 by Lemma 4. Therefore, Kτ is

a compact and convex neighborhood of the origin such that ∂Kτ = ∪4`=0D̂′`. See

Figure 14.

Remark 2 In order to simplify notation, dependence on τ has been suppressed

in the terms q1, p1, q2, and D̂′`, 0 ≤ ` ≤ 4.

H0, 0L

KΤ

D '0
`

D '4
`

D '3
`

D '2
`

D '1
`

Figure 14: A set Kτ whose boundary consists of the sets D̂′` for 0 ≤ ` ≤ 4

The proof of Proposition 3 involves an asymptotic argument on the parameter

τ as it relates to the compact set Kτ . It is useful for us to first describe the

asymptotic behavior of q1, q2, and p2 when τ → +∞.

Claim 1 The asymptotic behavior of q1, q2, and p2 is as follows:

(i) q1 = (r − 1)τ +O(1) as τ → +∞.

(ii) p2 =
(
r−1
r

)
τ +O(1) as τ → +∞.

(iii) q2 =
√

2 ln(b) r−1
r

√
τ +O(1) as τ → +∞.
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Proof. From (46) and (48),

q1 = (r − 1)τ + ln(b− a)− ln((b− a) + (1− b)(1− eτ(r−1)))

= (r − 1)τ + ln

(
1

1 + 1−b
b−a (1− eτ(r−1))

)
.

Since r ∈ (0, 1), (i) follows. Similarly,

p2 = − f̂1(0)

f̂ ′1(0)
= − 1

f̂ ′1(0)
ln

(
(b− a)eτ(r−1)

(b− a) + (1− b)(1− eτ(r−1))

)
=

(1− r)
f̂ ′1(0)

τ − ln(b− a)

f̂ ′1(0)
+

ln((b− a) + (1− b)(1− eτ(r−1)))
f̂ ′1(0)

.

Since r ∈ (0, 1) and lim
τ→∞

f̂ ′1(0) = −r, (ii) follows. Finally, from (49) and (ii),

q2 =
−c1 +

√
c21 − 4 c2 p2
2c2

=

√
−p2
c2

+O(1)

=

√
−
(
r − 1

c2 r

)
τ +O(1),

and thus (iii) follows from substituting c2 = −1/(2 ln(b)). 2

3.4.4 Proof of Proposition 3

To prove Proposition 3, we establish first that any given bounded set B ⊂ R2

is contained in Kτ for τ large enough.

Claim 2 Let B ⊂ R2 be bounded. Then for all τ large enough, B ⊂ Kτ .

Proof. Since Kτ is convex, the quadrilateral S whose endpoints are (τ, 0), (0, q1),

(p2, 0) and (0, q2) is such that S ⊂ Kτ (see Figure 15). Therefore, Claim 1 implies

that for all large enough τ , Kτ contains B. 2

Next we prove that for all τ large enough, T̂ (D̂′`) ⊂ Kτ for 0 ≤ ` ≤ 4. Once

this has been established, it follows that Kτ is T̂ -invariant for large τ and the proof
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Figure 15: The quadrilateral Sτ with Sτ ⊂ Kτ

of Proposition 3 will be complete. The boundary of Kτ along with its image under

the map T̂ can be seen in Figure 16. We assume in Claims 3 through 7 that τ ≥ τ1.

Claim 3 T̂ (D̂′0) ⊂ Kτ .

Proof. Let us first verify that the endpoints of T̂ (D̂′0), namely the points T̂ (τ, 0)

and T̂ (τ,−τ), belong to Kτ . Notice T̂ (τ, 0) = ( τ,− ln ((1− b) eτ + b ) ) satisfies

− ln ((1− b) eτ + b ) > −τ , hence T̂ (τ, 0) ∈ Kτ . Also, T̂ (τ,−τ) =

( ln( a eτ + (1− a) ),−τ) satisfies 0 < ln( a eτ + (1 − a) ) < τ . Since (τ,−τ) ∈ D̂′1,

it follows from Lemma 1 that T̂ (τ,−τ) ∈ Kτ , so both endpoints of T̂ (D̂′0) belong

to Kτ .

We now show that T̂ (D̂′0) is a curve linearly ordered in the �ne partial order.

We may write D̂′0 = {(τ,−τ t) : 0 ≤ t ≤ 1}. For 0 ≤ t ≤ 1 set

(ũ(t), ṽ(t)) := T̂ ((τ,−τ t)) =
(

ln
(
a eτ + (1− a) eτ(1−t)

)
, ln

(
e−τt

(1−b) eτ(1−t)+b

))
.

(50)

Then T̂ (D̂′0) = {(ũ(t), ṽ(t)) : 0 ≤ t ≤ 1}. From (50),

dũ

dt
= − (1− a)τ eτ(1−t)

(1− a) eτ(1−t) + a eτ
< 0 and

dṽ

dt
= − b τ eτt

(1− b)eτ + b eτt
< 0.
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Thus both ũ(t) and ṽ(t) are decreasing functions of t in [0, 1], so T̂ (D̂′0) is a curve

linearly ordered in the �ne partial order. It follows that T̂ (D̂′0) is a subset of the

closed rectangular region R determined by the vertices T̂ (τ, 0) and T̂ (τ,−τ). Since

the second coordinate of T̂ (τ,−τ) is equal to −τ and D̂′1 is the graph of a convex

function, it follows from (27) that R ⊂ Kτ , and consequently, T̂ (D̂′0) ⊂ Kτ . 2

H0, 0L

KΤ

T
`

HKΤL

Figure 16: Boundary of the set Kτ (solid) and its image under T̂ (dashed).

Claim 4 T̂ (D̂′1) ⊂ Kτ .

Proof. For (u, v) ∈ D̂′1 arbitrary but fixed, let (ũ, ṽ) be given by

(ũ, ṽ) = T̂ (u, v) =

(
ln(a eu + (1− a) eu+v) , ln

(
ev

(1− b) eu+v + b

))
.

By the second relation in (27) of Lemma 1, and convexity of Kτ and D̂1, it is

sufficient to verify that ṽ < 0. Notice (u, v) ∈ D̂′1 implies u > 0, v < 0, and

(1− b) eu+v + b > (1− b) ev + b > ev. It follows that ṽ < 0. 2
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Claim 5 T̂ (D̂′2) ⊂ Kτ .

Proof. The line segment D̂′2 has slope − q1
p2

= f̂ ′1(0). Now

f̂ ′1(0) + r =
(1− b)(1− r) erτ

(b− 1)erτ + (1− a) eτ
=

(1− b)(1− r)
(b− 1) + (1− a) eτ(1−r)

> 0.

Thus the hypothesis − q1
p2
> −r of Lemma 2 is satisfied. Now, let L be the line

through (0, q1) and (p2, 0) and let L0 be the connected component of R2 \ L that

contains the origin. Lemma 2 guarantees T̂ (D̂′2) ⊂ L0. Also, note T̂ (D̂′2) is linearly

ordered in the �se partial order, which we verify next. We may write D̂′2 =

{(p2 t, (1− t) q1) : 0 ≤ t ≤ 1}. For 0 ≤ t ≤ 1 set

(ũ(t), ṽ(t)) := T̂ ((p2 t, (1− t) q1)) (51)

=

(
ln
(
a ep2 t + (1− a) ep2 t+(1−t) q1

)
, ln

(
e(1−t) q1

(1− b) ep2 t+(1−t) q1 + b

))
,

then T̂ (D̂′2) = {(ũ(t), ṽ(t)) : 0 ≤ t ≤ 1}. From (51),

dũ

dt
=
a p2 + (1− a)(p2 − q1)e(1−t) q1

a+ (1− a) e(1−t) q1
and

dṽ

dt
= −p2 (1− b)eq1+p2 t + b q1 e

q1 t

(1− b)eq1+p2 t + b eq1 t
.

(52)

Using statements (i) and (ii) of Claim 1 and (52) we conclude that for τ large

enough, ũ(t) is a decreasing function of t ∈ [0, 1] and ṽ(t) is an increasing function

of t ∈ [0, 1]. Consequently, T̂ (D̂′2) is a curve linearly ordered in the �se partial

order and is thus a subset of the rectangular region R determined by the initial

and final points. Hence

T̂ (D̂′2) ⊂ R ∩ L0. (53)

Note that T̂ (0, q1) ∈ Kτ by Claim 4 and T̂ (p2, 0) ∈ Kτ by Lemma 3. It follows

from (53) and the convexity of Kτ that T̂ (D̂′2) ⊂ Kτ . 2
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Claim 6 For all τ large enough, T̂ (D̂′3) ⊂ Kτ .

Proof. Suppose (u, v) ∈ D̂′3. From (23),

T̂ (u, v) =

(
ln
(
aeu + (1− a)eu+v

)
, ln

(
ev

(1− b)eu+v + b

))
.

By statement (41) in Lemma 3,

T̂ (u, v) ∈ {(s, t) : s > c2 t
2 + c1 t+ c0 , t > 0}. (54)

Now, let L be the line through (0, q2) and (τ, 0). Then R2 \ L has two connected

components, one of which, L0, contains the origin. As a result of (54), to complete

the proof it suffices to verify that T̂ (u, v) belongs to L0. In other words, for τ large

enough,

1

τ
ln
(
aeu + (1− a)eu+v

)
+

1

q2
ln

(
ev

(1− b)eu+v + b

)
< 1. (55)

Set

∆τ := 1− 1

τ
ln
(
aeu + (1− a)eu+v

)
− 1

q2
ln

(
ev

(1− b)eu+v + b

)
. (56)

Then (55) is equivalent to

∆τ > 0, (57)

for τ large enough. Consider the sets Q+ and Q− defined in (45). We verify (57)

for (u, v) ∈ Q− and for (u, v) ∈ Q+ separately. Suppose (u, v) ∈ Q−. In this case,

a eu + (1− a)eu+v is a weighted average of two numbers that are less than 1 which

implies that ln(aeu + (1− a)eu+v) < 0. Consequently, T̂ (u, v) ∈ {(s, t) : s ≤ 0, t >

0}. Combining this with (54), (57) follows. Now suppose (u, v) ∈ Q+. From (56),

τ q2 ∆τ = τq2 − q2 ln(a eu + (1− a)eu+v)− τ ln

(
ev

(1− b)eu+v + b

)
= τ(q2 − v) + τ ln((1− b)eu+v + b)− q2(u+ v)− q2 ln(ae−v + 1− a).

(58)
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By convexity, e(1−b)(u+v)+b·0 ≤ (1− b)eu+v + b e0. That is,

(1− b)(u+ v) ≤ ln((1− b)eu+v + b). (59)

Recognizing that ln(ae−v + 1− a) < 0 for v ≥ 0 and combining (58) and (59),

τ q2 ∆ ≥ τ(q2 − v) + τ(1− b)(u+ v)− q2(u+ v)

= τ(q2 − v) + (u+ v)(τ(1− b)− q2). (60)

From Claim 1, we can consider τ large enough such that q2 < (1− b)τ . Therefore,

since u+ v > 0 and 0 < v ≤ q2, (60) implies ∆τ ≥ 0. If ∆τ = 0, then (60) implies

v = q2 and u+ v = 0, which contradicts (u, v) ∈ Q+. Consequently, (57) holds. 2

Claim 7 For all τ large enough, T̂ (D̂′4) ⊂ Kτ .

Proof. We have D̂′4 = {(t τ, (1− t) q2) : t ∈ [0, 1]}. For t ∈ [0, 1], let (ũ(t), ṽ(t)) be

given by

(ũ(t), ṽ(t)) = T̂ (t τ, (1− t) q2) (61)

=

(
ln
(
aetτ + (1− a)etτ+(1−t)q2

)
, ln

(
e(1−t)q2

(1− b)etτ+(1−t)q2 + b

))
.

From (61),

dũ

dt
=

(1− a)(τ − q2)eq2 + a τ eq2t

(1− a)eq2 + a eq2t
, (62)

dṽ

dt
= −τe

q2+tτ (1− b) + b q2 e
q2t

b eq2t + (1− b)eq2+tτ
. (63)

Using statement (iii) of Claim 1 along with (62) and (63), we can conclude for τ

large enough that ũ(t) is an increasing function of t ∈ [0, 1] and ṽ(t) is a decreasing

function of t ∈ [0, 1]. As a consequence,

T̂ (D̂′4) is linearly ordered in the �se partial order. (64)
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We also have

T̂ (τ, 0) =

(
ln (aeτ + (1− a)eτ ) , ln

(
1

(1− b)eτ + b

))
= (τ,− ln ((1− b)eτ + b)) ∈ D̂′0. (65)

In light of (64) and (65), to prove the claim, it is sufficient to verify that T̂ (D̂′4) is

in a suitable component of the complement of the line through (0, q2) and (τ, 0),

for τ large enough. More precisely, we wish to verify

1

τ
ln
(
aetτ + (1− a)etτ+(1−t)q2

)
+

1

q2
ln

(
e(1−t)q2

(1− b)etτ+(1−t)q2 + b

)
< 1. (66)

For fixed τ , define

ψτ (t) := q2 ln
(
a+ (1− a)e(1−t)q2

)
− τ ln

(
(1− b)etτ+(1−t)q2 + b

)
.

Equation (66) is equivalent to

ψτ (t) < 0 for 0 ≤ t ≤ 1. (67)

We have,

ψ′τ (t) = −e(1−t)q2
(

(1− b)τ(τ − q2)etτ

b+ (1− b)etτ+(1−t)q2
+

(1− a)q22
a+ (1− a)e(1−t)q2

)
< 0. (68)

Finally, ψτ (0) < 0 follows from Claim 6 and thus (68) implies (67). 2

This completes the proof of Proposition 3 and thus, by Corollary 4, of state-

ment (vii) from Theorem 1.
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Abstract

Suppose k is a given positive natural number, M is a k × k matrix with

nonnegative entries, f` : [0,∞) → [0,∞) is a continuous function with f`(0) = 0

for ` ∈ {1, . . . , k}, A is a bounded, linear operator on an ordered Banach space X

with positive cone X+ such that AX+ ⊂ X+, and for each ` ∈ {1, . . . , k}, b` ∈ X+

and c` is a positive bounded linear functional on X.

Consider the following systems of difference equations:

yn+1 = M ( f1(y
(1)
n ), . . . , fk(y

(k)
n ) )t, n = 0, 1, 2, . . . , y0 ∈ Rk

+ (I)

and

xn+1 = A xn +
k∑
`=1

f`(c`xn) b`, n = 0, 1, 2, . . . , x0 ∈ X+. (II)

Conditions are established under which there is a correspondence between equi-

librium points of (I) and (II). Under these conditions, and when X = Rm, the

stability type of the zero equilibrium of (I) is shown to be the same as that for

(II). When k = 2 and the functions f` have certain monotonicity and convexity

characteristics, sufficient conditions are given for the existence of a unique positive

equilibrium for system (I). In this case, the stability of the equilibrium at the origin

is also established. Examples are included.

4.1 Introduction

Discrete dynamical systems are used to model populations in biological, epi-

demiological, and entomological applications. Many of these populations are non-

homogeneous in the sense that individuals vary in physiological characteristics and

may interact with the environment differently. These differences play an impor-

tant role in the dynamics of the entire population and necessitate a special type

of mathematical model, referred to as a structured population model. Structured

population models divide a population into specific classes or categories based
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on, among other things, chronological age, body size, or genetic differences [1].

The model then tracks the size/density through each generation for the variety of

classes by utilizing information related to the growth within each class as well as

rates of transfer from one class to another [1, 2]. Models of this type have also

been referred to as compartmental models and are discussed in detail in [1] and [2].

For interesting applications of structured models that have been studied recently,

see [3], [4], [5], and [6]. The focus of this manuscript will be on two specific types

of structured population models, introduced next.

Suppose that a population is divided into k classes so that at (discrete) time

n ∈ N the (density, number of individuals, etc.) in class ` is y
(`)
n . Denote by yn the

vector in Rk
+ such that

yn = (y(1)
n , y(2)

n , . . . , y(k)
n ).

An increase of 1 unit over n gives a new number of individuals in class `, which is

determined based on the previous number of individuals in each of the k classes.

Assume that in the (n+1)st generation the population in class ` gets a contribution

from each of the k classes according to the formula

y
(`)
n+1 = m`,1 f1(y

(1)
n ) +m`,2 f2(y

(2)
n ) + · · ·+m`,k fk(y

(k)
n ), (1)

where f` : [0,∞) → [0,∞) is a continuous function with f`(0) = 0 for ` ∈

{1, 2, . . . , k}. The terms m`,j are nonnegative constants that reflect birth and

death rates of the ` class and take into account transfer rates from the j to ` class.

If we denote by M = (m`,j) the k× k coefficient matrix, then we may write (1) as

the system

yn+1 = M ( f1(y
(1)
n ), . . . , fk(y

(k)
n ) )t, n = 0, 1, 2, . . . , y0 ∈ Rk

+. (I)

Systems of the form (I) were introduced for a specific genetics example by Friedland

and Karlin in [7] and can also be thought of as a special case of the more general
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equation

yn+1 = P (yn) yn, n = 0, 1, 2, . . . , y0 ∈ Rk
+,

which is studied by J. M. Cushing in [1]. Model (I) is a primary focus of this

manuscript.

Model (I) is useful in analyzing other types of structured population models.

In particular, (I) is utilized in this paper to study systems of the form

xn+1 = A xn +
k∑
`=1

f`(c` xn)b`, n = 0, 1, 2, . . . , x0 ∈ X+, (II)

where A is a bounded, linear operator on an ordered Banach space X with positive

cone X+ such that AX+ ⊂ X+ and for each ` ∈ {1, . . . , k}, b` ∈ X+, c` is a positive

bounded linear functional on X, and f` is a real valued function, as defined above.

Model (II) is a generalization of the population model formulated by Rebarber,

Tenhumberg, and Townley in [8]. They introduce the nonlinear, density dependent

model given by

xn+1 = A xn + f(c xn) b, n = 0, 1, 2, . . . , x0 ∈ X+, (2)

where A, xn, c, b and f are as stated above when k = 1 (see [8]). System (2) suc-

cessfully takes into account two important biological processes, survival/growth

and fecundity, and is useful in modeling stage structured plant and fishery pop-

ulations [8, 9]. The operator A is referred to as the survival operator and f(·) b

is referred to as the fecundity operator . The term c xn describes the number (or

density) of offspring, f(c xn) reflects the nonlinear density dependence on c xn, and

b describes how the offspring are distributed amongst the classes. The density

dependent fecundity structure f(c xn) b is common for single-species, structured

populations. Specific examples can be seen in [9], [10], and [11]. Some common
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density dependencies that are used in applications include

f(t) = β tα, α ∈ (0, 1) and β > 0, (3)

f(t) =
γ t

δ + t
, γ, δ > 0, (4)

f(t) = t e−η t, η > 0, (5)

where (3) is a power-law nonlinearity, (4) is of Beverton-Holt type, and (5) is

a Ricker nonlinearity [9]. Smith and Thieme in [12] also study (2) with general

functions that satisfy monotonicity/concavity restrictions and are able to prove

global dynamic results (see Theorems 6.1 and 7.1 in [12]). The current paper

performs a similar analysis for (II). With system (II), applications can be studied

involving structured populations that have k subclasses within each class. For ` ∈

{1, 2, . . . , k} the functions f` represent the nonlinear dependence on the offspring

for each of these subclasses.

Model (II) is potentially set in a high dimensionality state space X. The

nonlinearities, however, are of a very specific type. A natural question is whether

it is possible to reduce the complexity of the problem to one where the dimension

of the state space is the same as the number k of nonlinearities that appear in (II).

In this paper, we give an answer to the question by finding a k-dimensional model

of the form (I) that can be used to study (II). In particular, in Section 4.5, we give

conditions under which there is a one-to-one correspondence between the positive

equilibrium points of (I) and (II). Positive equilibrium points represent persistence

of the population and are an important feature of the models. Furthermore, when

the state space of (II) is Rm, we establish that the stability character of the origin

(which represents the extinction state) in (I) is the same as that of (II). With

these similarities between (I) and (II), it is useful to explore how stability of the

zero equilibrium is related to the existence, uniqueness, and stability of a positive

equilibrium for system (I). These results can then be used to draw conclusions
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about (II), hence reducing the complexity of the problem. For this reason, in

Sections 4.3 and 4.4, we study dynamics of (I) and establish results related to the

stability and existence and uniqueness of positive equilibria. Particular attention

is given to the two-dimensional case when k = 2.

The current paper is organized as follows: basic concepts and definitions are

presented in Section 4.2 and general results regarding systems of the form (I) are

presented in Section 4.3. The two-dimensional case of system (I) is analyzed in

Section 4.4. In the two-dimensional case, when it is known that the functions f1, f2

satisfy certain monotonicity and convexity characteristics, sufficient conditions are

established for the existence of a unique positive equilibrium. In this case, stability

characteristics of the origin and the positive fixed point are established and exam-

ples are presented to illustrate the results. Systems of the form (II) are analyzed

in Section 4.5 and connections are made with system (I) regarding the existence

and uniqueness of positive equilibrium points and the stability of the origin.

4.2 Background

For convenience, basic notions and definitions are provided here that are uti-

lized within the main sections of the paper.

Let X be a Banach space over R. A set X+ ⊂ X is an order cone if X+ is

closed, convex, and such that

X+ ∩ (−X+) = {0}, X+ 6= {0}, and λX+ ⊂ X+ for all λ ≥ 0.

An order cone is solid if int(X+) 6= ∅ (see [13]). If X∗ is the dual space of X, the

dual cone of X+ is the set

X∗+ := {c ∈ X∗ : c(x) ≥ 0, for all x ∈ X+ }.

If X+ is solid, then the set X∗+ is a cone in X∗. A functional c ∈ X∗+ is said to

be positive. The functional is strictly positive if c(x) > 0 for x ∈ X+ \ {0}. If
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x ∈ int(X+), then c(x) > 0 for every c ∈ X∗+ \ {0} ([13], Proposition 19.3).

Every order cone X+ induces a partial order � on X as follows: x � y if and

only if y − x ∈ X+. In this case, X is an ordered Banach space with order cone

X+. For points x, y ∈ X+, we say x � y if and only if y − x ∈ X+, x ≺ y if and

only if y − x ∈ X+ \ {0}, and x � y if and only if y − x ∈ int(X+) (see [14]).

The partial order � is compatible with addition, multiplication by a nonnegative

scalar, and convergence. The order interval Jx, yK, relative to the partial order �,

is defined by

Jx, yK := {u ∈ X : x � u � y}.

Let T : X → X be an operator. We say that T is monotone (with respect to the

partial order �) if x � y =⇒ T (x) � T (y), strictly monotone if x ≺ y =⇒

T (x) ≺ T (y) and strongly monotone if x ≺ y =⇒ T (x) � T (y). If T is linear,

monotonicity is equivalent to TX+ ⊂ X+ and strong monotonicity is equivalent to

T (X+ \ {0}) ⊂ int(X+). If an operator T is monotone with respect to a partial

order, it is referred to as order-preserving [14].

Let Rm = {(x1, . . . , xm) : x` ∈ R, ` = 1, . . . ,m }. The following result from

[14] is stated for order-preserving operators when X is taken to be Rm.

Theorem 1 For a nonempty set U ∈ Rm and a partial order � on Rm, Let

T : U → U be an order-preserving map and let u, v ∈ U be such that u ≺ v and

Ju, vK ⊂ U . If u � T (u) and T (v) � v, then Ju, vK is an invariant set and

(i) There exists a fixed point of T in Ju, vK.

(ii) If T is strongly order-preserving, then there exists a fixed point of T in Ju, vK

that is stable relative to Ju, vK.

(iii) If there is only one fixed point in Ju, vK, then it is a global attractor in Ju, vK

and therefore asymptotically stable relative to Ju, vK.
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Properties of matrices with real entries also play a role in the coming sections.

A matrix A ∈ Rm×m is nonnegative (positive), written A ≥ 0 (A > 0) if all of the

entries of A are nonnegative (positive). If A > 0, then A is strongly monotone as

a linear operator on Rm with order cone Rm
+ . A nonnegative matrix A is called

primitive if there exists N ∈ N such that AN > 0. The matrix A is irreducible if for

any i, j there is a k = k(i, j) such that (Ak)ij > 0. If A is irreducible, then I + A

is primitive (which can be shown by choosing N sufficiently large and expanding

(I + A)N in powers of A). Furthermore. if A is irreducible and ρ(A) < 1, then

(I − A)−1 > 0 (which follows from (I − A)−1 = I + A+ A2 + · · · ) [15].

Other useful results involve properties associated with the determinant of a

matrix. If A(t) is an m×m matrix valued, differentiable function of a real variable

t, Jacobi’s formula gives the derivative of the determinant of A(t) in terms of the

adjugate of A(t) and the derivative of A(t):

d

dt
detA(t) = tr

(
adj(A(t))

dA(t)

dt

)
.

The adjugate of A ∈ Rm×m satisfies adj(A)A = det(A) Im, where Im is the m×m

identity matrix. If A is m× p and B is an p×m matrix, Sylvester’s determinant

identity [16] is

det(Im + AB) = det(Ip +BA).

4.3 General Results for System (I)

In this section we investigate systems of the form (I) on Rk
+ with regards

to stability of the zero equilibrium and existence, uniqueness, and stability of a

positive equilibrium. Let � be a partial order on Rk, where the order cone is taken

to be the standard positive orthant Rk
+. In other words, for u, v ∈ Rk, u � v if and

only if u(`) ≤ v(`) for all ` ∈ {1, 2, . . . , k}. Let T : Rk
+ → Rk

+ be the map associated
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with system (I). That is, for y ∈ Rk
+,

T (y) = M ( f1(y
(1)), f2(y

(2)), . . . , fk(y
(k)) )t, (6)

where M ∈ Rk×k
+ and f` : [0,∞)→ [0,∞) is a continuous function with f`(0) = 0

for ` ∈ {1, 2, . . . , k}. For the remainder of the paper, we additionally assume that

f` has a C(1) extension on a neighborhood of [0,∞) for ` ∈ {1, 2, . . . , k}.

The map T from (6) may be written in the form

T (y) = M D(y) y, (7)

where D ∈ Rk×k
+ is defined by

D(y) = diag
(
g1(y

(1)), . . . , gk(y
(k))
)
,

for

g`(t) =

{
f`(t)

t
, if t > 0

f ′`(0), if t = 0
, ` ∈ {1, 2, . . . , k}.

It follows from (7) that 0 ∈ Rk
+ is a fixed point of T . The Jacobian matrix

associated with T is given by

JT (y) = M ( f ′1(y
(1)), f ′2(y

(2)), . . . , f ′k(y
(k)) )t. (8)

Since M consists of nonnegative entries, the following remark about the mono-

tonicity of T follows from (8).

Remark 1 T is monotone on Rk
+ provided that f` is increasing for ` ∈

{1, 2, . . . , k}.

Global results for system (I) can be established when more information is known

about the functions f` for ` ∈ {1, 2, . . . , k}. Define,

f ′(∞) = max
`

{
lim sup
t→∞

f`(t)

t

}
, f ′(0) = max

`
{f ′`(0)}

f ′(∞) = min
`

{
lim inf
t→∞

f`(t)

t

}
, f ′(0) = min

`
{f ′`(0)} .
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In addition, denote by h+(M) the maximum absolute row sum of M and by h−(M)

the minimum absolute row sum of M . That is,

h+(M) = max
i

k∑
j=1

|mi,j| and h−(M) = min
i

k∑
j=1

|mi,j|.

For notational simplicity, let

e := (1, 1, . . . , 1)t ∈ Rk
+.

Lemmas 1 and 2, presented next, help to establish results related to the exis-

tence of a positive fixed point for the map T as well as to the stability of the origin.

Lemma 1 provides sufficient conditions for the existence of a strict supersolution

(i.e. y ∈ int(Rk
+) such that T (y) ≺ y) or a strict subsolution (i.e. y ∈ int(Rk

+)

such that y ≺ T (y)) where ||y|| > r for r arbitrarily large. These solutions pro-

vide valuable information about the behavior of the map T at infinity. Lemma 2

presents a similar result with y as close to the origin as we wish.

Lemma 1 Let r > 0. The following properties hold:

(i) If 0 ≤ f ′(∞)h+(M) < 1, then there exists t∗ > r such that for all t > t∗,

y = t e satisfies T (y) ≺ y.

(ii) If f ′(∞)h−(M) > 1, then there exists t∗ > r such that for all t > t∗, y = t e

satisfies y ≺ T (y).

Proof.

(i) Let r > 0 and suppose that the functions f` satisfy 0 ≤ f ′(∞)h+(M) < 1.

Choose t∗ such that

t∗ > r and max
`

{
f`(t)

t

}
< 1

h+(M)
for all t > t∗.

Therefore, for all t > t∗,

D(t e) e = diag
(
f1(t)
t
, . . . , fk(t)

t

)
e ≺ 1

h+(M)
e.
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Also, by the definition of h+(M), M
h+(M)

e ≺ e. Consequently, defining y = t e and

using the form of T given in (7), we have

T (y) = M D(y) y = M D(t e) t e ≺ M
h+(M)

t e ≺ t e = y.

(ii) Similarly, suppose that the functions f` satisfy f ′(∞)h−(M) > 1. Choose

t∗ such that

t∗ > r and min{f`(t)} > 1
h−(M)

for all t > t∗.

Therefore, for all t > t∗,

D(t e) e = diag
(
f1(t)
t
, . . . , fk(t)

t

)
e � 1

h−(M)
e.

Also, by the definition of h−(M), M
h−(M)

e � e. Consequently, defining y = t e and

using the form of T given in (7), we have

T (y) = M D(y) y = M D(t e) t e � M
h−(M)

t e � t e = y.

The result follows. 2

Lemma 2 Let δ > 0. The following properties hold:

(i) If 0 ≤ f ′(0)h+(M) < 1, then there exists t∗ < δ such that for all t < t∗,

y = t e satisfies T (y) ≺ y.

(ii) If f ′(0)h−(M) > 1, then there exists t∗ < δ such that for all t < t∗, y = t e

satisfies y ≺ T (y).

Proof. The proofs of (i) and (ii) in Lemma 2 are similar to the proofs of (i) and

(ii) in Lemma 1 and are omitted here. 2

The existence of sub and supersolutions allow for monotonicity properties of

the map T to be exploited, which leads to two theorems. Theorem 2 treats the

local stability character of the fixed point at the origin and Theorem 3 is helpful

in determining when a positive fixed point of the map T is a global attractor..
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Theorem 2 The following statements are true:

(i) If 0 ≤ f ′(0)h+(M) < 1, then 0 is stable.

(ii) If f ′(0)h−(M) > 1, then 0 is unstable.

Proof. Statement (i) and (ii) follow directly from Lemma 2 and the definition of

stable and unstable. 2

Theorem 3 Suppose M is irreducible and, for ` ∈ {1, 2, . . . , k}, f` is nondecreas-

ing and such that f ′`(0) > 0. If ρ(JT (0)) > 1 and 0 ≤ f ′(∞)h+(M) < 1, then

there exists at least one positive fixed point x of the map T . Furthermore, if x is

unique then it is a global attractor on int(Rk
+).

Proof. We claim that for all ε > 0, there exists yε ∈ int(Rk
+) such that ||yε|| < ε and

yε ≺ T (yε). Let ε > 0. Since f` ∈ C(1) for ` ∈ {1, 2, . . . , k}, the Taylor expansion

of T about 0 is

T (y) = T (0) + JT (0) y + o(|y|). (9)

The irreducibility of M , along with f ′`(0) > 0 for ` ∈ {1, 2, . . . , k}, implies that

JT (0) is irreducible. Since ρ(JT (0)) > 1, by the Perron-Frobenius theorem [15],

ρ∗ = ρ(JT (0)) is an eigenvalue of JT (0) with an associated positive eigenvector v.

That is,

JT (0) v = ρ∗ v. (10)

For α > 0, take y = α v in (9). Consequently,

T (α v) = JT (0)α v + o(|α v|)

= ρ∗ α v + o(|α|),

100



and therefore,

1
α

(T (α v)− α v) = (ρ∗ − 1) v + o(1). (11)

The relation in (11) implies that if α is chosen small enough, then α v ≺ T (α v).

This α can also be chosen in such a way that ||α v|| < ε. Let yε = α v and this

proves the claim.

Now, since 0 ≤ f ′(∞)h+(M) < 1, then by Lemma 1, there exists y ∈ Rk
+

such that T (y) ≺ y. It follows from Theorem 1 that the order interval Jyε, yK is

invariant under the map T and there must exist at least one positive fixed point x

in Jyε, yK.

Suppose that the positive fixed point x of the map T is unique. By statement

(iii) of Theorem 1, x is a global attractor in the order interval Jyε, yK. By Lemma

1, y can be chosen such that ||y|| > r for any r > 0 and by the above claim, yε can

be chosen such that ||yε|| < ε for any ε > 0. Letting ε→ 0 and r →∞, it follows

that x is a global attractor on int(Rk
+). 2

We now explore the special case when k = 2 for system (I).

4.4 The Two-Dimensional Case for System (I)

In the two-dimensional case, more information can be determined about the

fixed points of the map T in (6). Denote by T̃ the map in (6) when k = 2. That

is, with M = (mi,j) ∈ R2×2
+ ,

T̃

(
u
v

)
= M (f1(u), f2(v))t =

(
m11 f1(u) +m12 f2(v)
m21 f1(u) +m22 f2(v)

)
. (12)

In the proceeding arguments, when it is assumed that f1, f2 : [0,∞) → [0,∞)

are twice differentiable, strictly increasing, and convex (concave), what is meant is

that f1, f2 have extensions to functions with these properties that are defined on

a neighborhood of [0,∞). Note that with this understanding, if f1, f2 are strictly

101



increasing and concave (or convex), then

f ′1(t) > 0 and f ′2(t) > 0 for t ≥ 0. (13)

In this section we determine conditions for the existence of a unique positive equi-

librium and for the stability, or lack thereof, of the origin.

A natural problem is the following: Find conditions on f1, f2 under which

there is a correspondence between the existence of a unique positive fixed point

and the stability character of the origin. In Section 4.4.3, we give a complete

answer for the specific case when f1, f2 are of Beverton-Holt type. For functions

f1 and f2 satisfying more general conditions, the question is partly answered by

Theorems 6 and 7 in Section 4.4.2, but the complete answer remains open. The

question posed above in a higher dimensional setting is also of great interest.

4.4.1 Conditions for Uniqueness of the Positive Equilibrium

In this section we give conditions for which the map T̃ in (12) has a unique

positive fixed point under restrictions placed on f1, f2. The equilibrium curves of

the map T̃ are the curves denoted by C1 and C2, where

C` : t` = φ`(t1, t2) = m`,1 f1(t1) +m`,2 f2(t2), ` = 1, 2.

Fixed points of the map T̃ occur at the intersection points of the equilibrium curves

C1 and C2. We focus on two special cases:

Case 1: f1, f2 are twice differentiable, strictly increasing, and convex. (14)

Case 2: f1, f2 are twice differentiable, strictly increasing, and concave.

Two theorems are now presented, which provide necessary and sufficient con-

ditions for a unique positive fixed point of T̃ to exist in Cases 1 and 2 from (14).

We begin with Theorem 4, which involves Case 1.
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Theorem 4 Let M > 0 and suppose that f1, f2 are twice differentiable, strictly

increasing, and convex. Consider the following conditions:

(A) max{m11 f
′
1(0),m22 f

′
2(0)} < 1 and

1−m22 f
′
2(0)

m12 f ′2(0)
>

m21 f
′
1(0)

1−m11 f ′1(0)
.

(B1) There exists t∗ > 0 such that m11 f
′
1(t
∗) = 1.

(B2) There exists t∗ > 0 such that m22 f
′
2(t
∗) = 1.

(B3) The limits L1 and L2 exist and L2 < L1, where

L1 := lim
t→∞

[
m21 f

′
1(t)

1−m11 f ′1(t)

]
and L2 := lim

t→∞

[
1−m22 f

′
2(t)

m12 f ′2(t)

]
.

The map T̃ has a positive fixed point (t1, t2) if and only if (A) and at least one of

(B1), (B2), or (B3) are satisfied. When a positive fixed point (t1, t2) exists, it is

unique. Furthermore, in this case, (t1, t2) and the origin are both hyperbolic fixed

points.

Remark 2 It follows from (13) that the limit L2 exists and the inequality in (A)

is well defined. Also, if conditions (B1) and (B2) are not satisfied, then the mono-

tonicity and convexity characteristics of f1, f2, along with (A), imply that

lim
t→∞

(m11 f
′
1(t)) < 1 and lim

t→∞
(m22 f

′
2(t)) < 1,

in which case the limit L1 in (B3) exists.

Proof. Consider the parametric curves

φ` := {(x`(t), y`(t)) : t > 0}, ` = 1, 2, (15)

where
x1(t) = t−m11 f1(t), x2(t) = m12 f2(t),

and
y1(t) = m21 f1(t), y2(t) = t−m22 f2(t).

(16)
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Figure 17: The parametric curves φ1 and φ2 are plotted for various situations
described in Theorem 4. In (a) conditions (A), (B1) and (B2) are satisfied, in (b)
(A) and (B2) are satisfied, in (c) (A) and (B1) are satisfied and in (d) (A) and
(B3) are satisfied.

The curves C1 and C2 intersect if and only if φ1 and φ2 intersect. We need the

following derivatives:

dy1
dx1

∣∣∣∣
t

=
m21 f

′
1(t)

1−m11 f ′1(t)
and

dy2
dx2

∣∣∣∣
t

=
1−m22 f

′
2(t)

m12 f ′2(t)
, (17)

d2x1
dy21

∣∣∣∣
t

= − f ′′1 (t)

m2
21(f

′
1(t))

3
and

d2y2
dx22

∣∣∣∣
t

= − f ′′2 (t)

m2
12(f

′
2(t))

3
. (18)

Note that the geometric interpretations of conditions (A), (B1), (B2), and (B3)

from Theorem 4 are as follows:

(A) dy1
dx1

∣∣∣
0
, dy2
dx2

∣∣∣
0
> 0 and dy2

dx2

∣∣∣
0
> dy1

dx1

∣∣∣
0
,

(B1) There exists t∗ > 0 such that dx1
dt

∣∣
t∗

= 0
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(B2) There exists t∗ > 0 such that dy2
dt

∣∣
t∗

= 0

(B3) limt→∞
dy2
dx2

< limt→∞
dy1
dx1

.

Under the hypotheses imposed on f1, f2, it is clear from (18) that

d2x1
dy21

< 0 and
d2y2
dx22

< 0 for all t ≥ 0. (19)

Let Q1 be the standard first quadrant. We claim that if m11 f
′
1(0) ≥ 1, then

|φ1|∩ (Q1 \{(0, 0)}) = ∅. Similarly, if m22 f
′
2(0) ≥ 1, then |φ2|∩ (Q1 \{(0, 0)}) = ∅.

Suppose that m11 f
′
1(0) > 1, then clearly dy1

dx1

∣∣∣
0
< 0. Since f1 is increasing, (16)

implies dx1
dt

∣∣
0
< 0 and dy1

dt
> 0 for all t. Combining this with the fact that d2x1

dy21
< 0,

we can conclude dx1
dt

< 0 for all t ≥ 0. Hence, |φ1| ∩ (Q1 \ {(0, 0)}) = ∅. If

m11 f
′
1(0) = 1, the same conclusion follows from (19). A similar argument can be

used if m22 f
′
2(0) ≥ 1, thus completing the proof of the claim.

(⇒) Let T̃ have a positive fixed point (t1, t2) ∈ (0,∞)× (0,∞). Suppose that

(A) is not satisfied. This implies that m11 f
′
1(0) ≥ 1, m22 f

′
2(0) ≥ 1, or

1−m22 f
′
2(0)

m12 f ′2(0)
≤ m21 f

′
1(0)

1−m11 f ′1(0)
. (20)

If m11 f
′
1(0) ≥ 1 or m22 f

′
2(0) ≥ 1, then by the above claim, |φ1|∩(Q1\{(0, 0)}) = ∅

or |φ2| ∩ (Q1 \ {(0, 0)}) = ∅, which means φ1 and φ2 do not have a positive

intersection point, a contradiction. If (20) holds, then dy2
dx2

∣∣∣
0
≤ dy1

dx1

∣∣∣
0

and it follows

from (19) that a positive intersection point cannot exist, thus, (A) holds.

Now, suppose that (A) is satisfied and that (B1), (B2) and (B3) are not

satisfied. From (A),

dy1
dx1

∣∣∣∣
0

<
dy2
dx2

∣∣∣∣
0

. (21)

Since (B1) and (B2) are not satisfied, then dy1
dx1
, dy1
dx1

> 0 for all t ≥ 0. From (19),

(21) and the fact that (B3) is not satisfied, it follows that φ1 and φ2 do not have a

positive intersection, a contradiction. We conclude that if T̃ has a unique positive
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fixed point (t1, t2) ∈ (0,∞) × (0,∞), then (A) is satisfied along with at least one

of (B1), (B2) and (B3).

(⇐) Suppose that (A) is satisfied, in which case (21) holds. We consider three

separate cases when (B1), (B2) and (B3) are each satisfied and prove that there

exists a fixed point (t1, t2) ∈ (0,∞) × (0,∞) for the map T̃ . If (B1) is satisfied,

then there exists t∗ > 0 such that dx1
dt

∣∣
t∗

= 0. Since f1 is increasing and concave,

m11 f
′
1(t) > 1 for all t > t∗. (22)

Combining (22) with (17) and (19), there must exist t1 > t∗ such that x1(t1) = 0

and y1(t) > 0. Consequently, it follows from (21) that the parametric curves φ1

and φ2 have a positive intersection and thus T̃ has a positive fixed point. The case

involving (B2) is similar.

Finally, suppose that (B3) is satisfied, which implies that (B1) and (B2) are

not satisfied. In other words,

dy1
dx1

,
dy2
dx2

> 0 for all t ≥ 0. (23)

From (21), (23) and (B3), the parametric curves φ1 and φ2 have a positive inter-

section point, hence T̃ has a fixed point in (0,∞)× (0,∞). If T̃ has two or more

positive fixed points, it can be checked (with similar arguments) that a contradic-

tion occurs. Hence if a positive fixed point exists, it is unique.

Now, from (A), dy2
dx2

∣∣∣
0
6= dy1

dx1

∣∣∣
0
, which implies that the curves φ1 and φ2 do not

have a tangential contact point at the origin. Similarly, based on the curvature of

φ1 and φ2 and conditions (B1), (B2), and (B3), φ1 and φ2 do not have a tangential

contact point at (t1, t2). It follows that the origin and (t1, t2) are hyperbolic by a

result stated in [17]. 2

Theorem 5 establishes necessary and sufficient conditions for the existence of

a unique positive fixed point of T̃ when f1, f2 are strictly increasing and concave.
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Theorem 5 Let M > 0 and suppose that f1, f2 are twice differentiable, strictly

increasing, and concave. Consider the following conditions:

(A) The limits L1 and L2 exist and L2 > L1, where

L1 := lim
t→∞

[
m21 f

′
1(t)

1−m11 f ′1(t)

]
and L2 := lim

t→∞

[
1−m22 f

′
2(t)

m12 f ′2(t)

]
.

(B1) m11 f
′
1(0) ≤ 1.

(B2) m11 f
′
1(0) > 1 and there exists t∗ > 0 such that m11 f

′
1(t
∗) = 1.

(C1) m22 f
′
2(0) ≤ 1.

(C2) m22 f
′
2(0) > 1 and there exists t∗ > 0 such that m22 f

′
2(t
∗) = 1.

(D) max{m11 f
′
1(0),m11 f

′
2(0)} ≤ 1 and

(1−m22 f
′
2(0))(1−m11 f

′
1(0)) < m21m12 f

′
1(0) f ′2(0).

The map T̃ has a positive fixed point (t1, t2) if and only if (A) is satisfied along

with (i) (B1) and (C2), (ii) (B2) and (C1), (iii) (B2) and (C2) or (ii) (D). When

a positive fixed point (t1, t2) exists, it is unique. Furthermore, in this case, (t1, t2)

is hyperbolic and if (1−m22 f
′
2(0))(1−m11 f

′
1(0)) 6= m21m12 f

′
1(0) f ′2(0), then the

origin is hyperbolic.

Remark 3 It follows from (13) that the limit L2 exists and the inequality in (D) is

well defined. Also, if (B1), (B2), or (D) is satisfied, then based on the monotonicity

and concavity of f1, it can be shown that there exists t∗ > 0 such that for all t > t∗,

m11 f
′
1(t) < 1, which implies that the limit L1 exists.

Proof. The proof of Theorem 5 is similar to that of Theorem 4 and is omitted here.

2
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Figure 18: The parametric curves φ1 and φ2 are plotted for different cases described
in Theorem 5. In figure (a) conditions (B1) and (C2) are satisfied, in (b) (B2) and
(C1) are satisfied, in (c) (D) is satisfied and in (d) (B2) and (C2) are satisfied.
Note that hypothesis (A) is satisfied in all cases.

4.4.2 Stability of the Origin

Theorems 4 and 5 from Section 4.4.1 provide necessary and sufficient condi-

tions for the map T̃ from (12) to have a unique positive fixed point under the

conditions set forth in Cases 1 and 2 from (14). In these special cases, more can be

said about the stability of the origin as a fixed point of the map T̃ . The Jacobian

matrix associated with T̃ is

JT̃

(
u
v

)
=

(
m11 f

′
1(u) m12 f

′
2(v)

m21 f
′
1(u) m22 f

′
2(v)

)
.

When f ′1(t), f
′
2(t) ≥ 0 for all t ≥ 0, all entries of JT̃ are nonnegative on R2

+ and

thus the map T̃ is monotone (i.e. cooperative). Evaluating the Jacobian matrix
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at the fixed point (0, 0), we have

JT̃

(
0
0

)
=

(
m11 f

′
1(0) m12 f

′
2(0)

m21 f
′
1(0) m22 f

′
2(0)

)
,

from which it follows that the eigenvalues associated with JT̃ (0, 0) are the roots of

the characteristic equation

λ2 − (m11 f
′
1(0) +m22 f

′
2(0))λ+ f ′1(0) f ′2(0)(m11m22 −m12m21) = 0.

In Case 1 from (14), if T̃ has a unique positive fixed point x̄, then it is shown that

x̄ is a repeller or a saddle point and that the fixed point at the origin is locally

asymptotically stable. In Case 2, if T̃ has a unique positive fixed point x̄, then

under one additional assumption (to rule out nonhyperbolic cases) it is verified

that x̄ is locally asymptotically stable and that the fixed point at the origin is

unstable. These statements are formally presented and proven in Theorems 6 and

7.

Theorem 6 Suppose that f1, f2 are twice differentiable, strictly increasing, and

convex. If the map T̃ has a unique positive fixed point x̄, then x̄ is a repeller or a

saddle point and the fixed point at the origin is locally asymptotically stable.

Proof. From (13), f ′1(0), f ′2(0) > 0. By the Schur-Cohn criterion, to prove that the

fixed point at the origin is locally asymptotically stable, it is sufficient to verify

that

|trJT̃ (0)| < 1 + detJT̃ (0) < 2. (24)

In this case, condition (24) is equivalent to

m11

f ′2(0)
+

m22

f ′1(0)
− 1

f ′1(0) f ′2(0)
< detM <

1

f ′1(0) f ′2(0)
, (25)

where detM = m11m22 −m12m21. Since f1, f2 are strictly increasing and convex

and T̃ have as unique positive fixed point x̄, then Theorem 4 guarantees

max{m11 f
′
1(0),m22 f

′
2(0)} < 1 and

1−m22 f
′
2(0)

m12 f ′2(0)
>

m21 f
′
1(0)

1−m11 f ′1(0)
. (26)
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It follows from the first condition in (26) that

m11m22 <
1

f ′1(0) f ′2(0)
.

Consequently, since detM < m11m22 we have detM < 1
f ′1(0) f

′
2(0)

. From the second

condition in (26), it follows that detM > m11

f ′2(0)
+ m22

f ′1(0)
− 1

f ′1(0) f
′
2(0)

and thus (25) holds

and the fixed point at the origin is locally asymptotically stable.

By monotonicity of T̃ , the order interval J0, x̄K is T̃ -invariant and, from a

theorem presented in [18], the interior of the order interval J0, x̄K is a subset of the

basin of attraction of 0 or x̄. Since 0 is locally asymptotically stable, then J0, x̄K

is a subset of the basin of attraction of 0. Consequently, x̄ is unstable. Theorem

4 guarantees that x̄ is hyperbolic and thus it is either a repeller or a saddle point.

2

The next theorem treats Case 2 from (14), where f1, f2 are twice differentiable,

strictly increasing, and concave. Note that the assumption in (27) is included to

ensure that the origin is not nonhyperbolic.

Theorem 7 Suppose that f1, f2 are twice differentiable, strictly increasing, and

concave. Additionally assume that

(1−m22 f
′
2(0))(1−m11 f

′
1(0)) 6= m21m12 f

′
1(0) f ′2(0). (27)

If the map T̃ has a unique positive fixed point x̄, then x̄ is locally asymptotically

stable and the fixed point at the origin is unstable.

Proof. From (13), f ′1(0), f ′2(0) > 0. Suppose that T̃ has a unique positive fixed

point. By the Schur-Cohn criterion, to prove that the fixed point at the origin is

not stable, it is sufficient to verify that

|trJT̃ (0)| > 1 + detJT̃ (0) or detJT̃ (0) > 1. (28)
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Condition (28) is equivalent to

detM <
m11

f ′2(0)
+

m22

f ′1(0)
− 1

f ′1(0) f ′2(0)
or detM >

1

f ′1(0) f ′2(0)
. (29)

Since f1, f2 are strictly increasing and concave and T̃ has a unique positive fixed

point, then Theorem 5 guarantees that one of the cases (i) through (iv) from the

statement of the theorem is satisfied. We consider each case separately to verify

that (29) holds.

If (i) holds then m11 ≤ 1
f ′1(0)

and m22 >
1

f ′2(0)
. Therefore,

m22

(
1

f ′1(0)
−m11

)
≥ 1

f ′2(0)

(
1

f ′1(0)
−m11

)
,

which implies that m11m22 ≤ m11

f ′1(0)
+ m22

f ′2(0)
− 1

f ′1(0) f
′
2(0)

. Since detM < m11m22, it

follows that the first condition in (29) is satisfied. A similar argument can be used

if (ii) holds. If (iii) holds then m11 >
1

f ′1(0)
and m22 >

1
f ′2(0)

, in which case

m11

f ′2(0)
+

m22

f ′1(0)
>

2

f ′1(0) f ′2(0)
. (30)

Proceed by contradiction and assume that (29) is not satisfied. That is, assume

m11

f ′2(0)
+

m22

f ′1(0)
− 1

f ′1(0) f ′2(0)
< detM <

1

f ′1(0) f ′2(0)
.

It follows that m11

f ′2(0)
+ m22

f ′1(0)
< 2

f ′1(0) f
′
2(0)

, a contradiction to (30). Finally, if (iv) holds,

then max{m11 f
′
1(0),m22 f

′
2(0)} < 1 and

1−m22 f
′
2(0)

m12 f ′2(0)
<

m21 f
′
1(0)

1−m11 f ′1(0)
. (31)

The inequality in (31) implies that the first condition in (29) is satisfied. Therefore,

the origin is not stable. By Theorem 5 and (27), the origin is hyperbolic, which

implies that it is unstable. As a result, the interior of the order interval J0, x̄K is a

subset of the basin of attraction of x̄ [18].

Since f1, f2 ∈ C(1), the Taylor expansion of T̃ about x̄ is

T̃ (y) = T̃ (x̄) + ρ(JT̃ (x̄)) y + o(|y|).
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The irreducibility of M , along with (13), implies that JT̃ (x̄) is irreducible. By

the Perron-Frobenius theorem, ρ∗ = ρ(JT̃ (x̄)) is a positive eigenvalue of JT̃ (x̄)

associated with a positive eigenvector v. That is,

JT̃ (x̄) v = ρ∗v

For α < 0, take y = x̄ + αv. Consequently,

T̃ (x̄ + α v) = T̃ (x̄) + JT̃ (x̄)α v + o(|α v|)

= x̄ + ρ∗ α v + o(|α|),

Therefore

T̃ (y)− y = α ((ρ∗ − 1)v + o(1)) (32)

Since the interior of the order interval J0, x̄K is a subset of the basin of attraction

of x̄, for α < 0 chosen sufficient close to zero, the left hand side of (32) is positive,

which implies that ρ∗ < 1. Hence x̄ is locally asymptotically stable. 2

The above results provide a strong connection between the existence of a

positive fixed point and the stability of the origin when f1, f2 satisfy the conditions

set forth in (14). A natural extension is to investigate the stability of the origin

in these same cases when it is assumed that a positive fixed point does not exist.

This will be investigated in the future.

4.4.3 Examples

To illustrate Theorems 4, 5, 6, and 7 presented in Sections 4.4.1 and 4.4.2,

two specific examples are provided in the current section. Example 1 considers

systems of the form (I) with k = 2, where the functions are of Beverton-Holt type

from (4). Example 2 considers quadratic fractional type functions.
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Example 1 Consider the system of difference equations

xn+1 =
m11 xn
δ1 + xn

+
m12 yn
δ2 + yn

, (33)

yn+1 =
m21 xn
δ1 + xn

+
m22 yn
δ2 + yn

, n = 0, 1, 2, . . . ,

where m11,m12,m21,m22, δ1, δ2 > 0 and the initial condition (x0, y0) ∈ (0,∞) ×

(0,∞). The map T1 associated with system (33) is

T1

(
u
v

)
=

(m11 u
δ1+u

+ m12 v
δ2+v

m21 u
δ1+u

+ m22 v
δ2+v

)
, (34)

and has the form given in (12), where f`(t) = t
δ`+t

for ` = 1, 2. A simple calculation

shows that f1, f2 are strictly increasing and concave. Therefore, Theorem 5 can be

applied to determine necessary and sufficient conditions for which a unique positive

fixed point exists for the map T1. When it is known that T1 has a unique positive

fixed point, one can apply Theorem 7 and the general results from Section 4.3 to

determine the global character of system (33). It is shown that there are only two

dynamical scenarios: Either there exists a unique positive fixed point x̄ that is

a global attractor or there are no positive fixed points and the origin is a global

attractor. This result is presented as Proposition 1. Note that (35) is included to

ensure that the origin is not nonhyperbolic.

Proposition 1 Suppose that

(δ2 −m22)(δ1 −m11) 6= m21m12. (35)

The map T1 in (34) has a positive fixed point x̄ if and only if at least one of the

following conditions is satisfied:

(H1) m11 ≤ δ1 and m22 > δ2 or m11 > δ1 and m22 ≤ δ2.

(H2) m11 > δ1 and m22 > δ2.
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(H3) m11 ≤ δ1, m22 ≤ δ2, and (δ2 −m22)(δ1 −m11) < m21m12.

When it exists, x̄ is unique and a global attractor on int(R2
+). When there does not

exist a positive fixed point, the fixed point at the origin is a global attractor.

Proof. In this case,

lim
t→∞

[
1−m22 f

′
2(t)

m12 f ′2(t)

]
= lim

t→∞

[
(δ2 + t)2 − δ2m22

δ2m12

]
= +∞,

lim
t→∞

[
m21 f

′
1(t)

1−m11 f ′1(t)

]
= lim

t→∞

[
δ1m21

(δ1 + t)2 − δ1m11

]
= 0,

which implies that (A) of Theorem 5 is satisfied. Now, assume (H1) is satisfied.

First consider the case when m11 ≤ δ1 and m22 > δ2. This implies that (B1) holds.

Furthermore, a simple calculation shows that there exists t∗ =
√
m22 δ2 − δ2 > 0

such that m22 f
′
2(t
∗) = 1 and thus (C2) holds. Using similar logic, m11 > δ1 and

m22 ≤ δ2 are equivalent to (B2), (C1) from Theorem 5. Similarly, (H2) is equivalent

to (B2), (C2) and (H3) is equivalent to (D). The existence and uniqueness of a

positive fixed point x̄ follows from Theorem 5.

Since (δ2 − m22)(δ1 − m11) 6= m21m12, by Theorem 5 and 7 the origin is

hyperbolic and unstable. Hence, ρ(JT1(0)) > 1. Also, M = (mi,j) is irreducible

and

f ′(∞) = max
`

{
lim sup
t→∞

f`(t)

t

}
(36)

= max
`

{
lim sup
t→∞

1

δ` + t

}
= 0.

Consequently, x̄ is a global attractor on int(R2
+) by Theorem 3. Now, if x̄ does

not exist then (H1), (H2), and (H3) are not satisfied. This immediately implies

that m11 ≤ δ1, m22 ≤ δ2 and (δ2 −m22)(δ1 −m11) > m21m12. We will verify that

the origin is locally asymptotically stable by applying Shur-Cohn criterion to the

Jacobian of the map evaluated at 0. That is, we will verify conditions (25), given
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in this example as

δ2m11 + δ1m22 − δ1 δ2 < detM < δ1 δ2, (37)

Since m11 ≤ δ1, m22 ≤ δ2 then

detM < m11m22 ≤ δ1 δ2,

which verifies the second inequality from (37). The first inequality from (37) then

follows directly from (δ2 −m22)(δ1 −m11) > m21m12. Consequently, the origin is

locally asymptotically stable.

Using (36), Lemma 1 guarantees that there exists a point y ∈ (0,∞)× (0,∞),

with ||y|| as large as we like, such that T1(y) ≺ y. Therefore, from Theorem 1,

the order interval J0, yK is invariant under T1. With no other interior fixed points,

a result from [18] ensures that the interior of J0, yK is a subset of the basin of

attraction of the origin. Since y can be chosen as large as we like, the origin is a

global attractor. 2

It is worth mentioning that the global dynamics of (33) can be completely

characterized using general theory of two-dimensional cooperative systems of dif-

ference equations. The example is presented only to illustrate the main theorems.

The next example illustrates both Theorems 4 and 5.

Example 2: Consider the system of difference equations

xn+1 =
m11 xn(xn + α1)

xn + β1
+
m12 yn(yn + α2)

yn + β2
, (38)

yn+1 =
m21 xn(xn + α1)

xn + β1
+
m22 yn(yn + α2)

yn + β2
, n = 0, 1, 2, . . . ,

where all parameters are taken to be strictly positive and the initial condition

(x0, y0) ∈ (0,∞)× (0,∞). The map T2 associated with (38) is

T2

(
u
v

)
=

(
m11 u(u+α1)

u+β1
+ m12 v(v+α2)

v+β2
m21 u(u+α1)

u+β1
+ m22 v(v+α2)

v+β2

)
,
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and has the form (12), where f` = t(t+α`)
t+β`

for ` = 1, 2. It can be easily verified that

f1, f2 are strictly increasing functions. Also notice

d2f`
dt2

=
2 β`(β` − α`)

(t+ β`)3
, (39)

and thus for ` = 1, 2 we have the following:

f` is convex if β` − α` > 0, (40)

f` is concave if β` − α` < 0. (41)

Theorem 4 and 5 can be applied to determine necessary and sufficient conditions

for which T2 has a unique positive fixed point in the case when the f`’s are either

both convex or both concave. When it is known that T2 has a unique positive

fixed point, one can apply the general results from Section 4.3 to establish the

global character of (38). The case when f1, f2 are both convex is treated first in

Proposition 2.

Proposition 2 Let β` − α` > 0 for ` = 1, 2. The map T2 has a positive fixed

point x̄ if and only if

m11 ∈
(

0,
β1
α1

)
, m22 ∈

(
0,
β2
α2

)
,

β2 −m22 α2

m12 α2

>
m21 α1

β1 −m11 α1

, (42)

and one of the following conditions is satisfied:

(i) max{m11,m22} > 1.

(ii) m11,m22 6= 1 and
1−m22

m12

<
m21

1−m11

.

Furthermore, when x̄ exists, it is unique and is a saddle point or a repeller.

Proof. Note that in this case f1, f2 are convex by (40). Therefore, Theorem

4 can be applied. The conditions in (42) are equivalent to condition (A). If

max{m11,m22} > 1, then either m11 > 1 or m22 > 1. If m11 > 1, it can be
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easily verified (using m11 <
β1
α1

and β1 − α1 > 0) that m11 f
′
1(t) = 1 has a positive,

real solution given by

t∗ =
β1(1−m11) +

√
β1m11(β1 − α1)(m11 − 1)

m11 − 1
,

and thus (B2) is satisfied. Similarly, m22 > 1 is equivalent to (B1). Furthermore,

lim
t→∞

[
1−m22 f

′
2(t)

m12 f ′2(t)

]
=

1−m22

m12

,

lim
t→∞

[
m21 f

′
1(t)

1−m11 f ′1(t)

]
=

m21

1−m11

,

and thus the condition in (ii) is equivalent to (B3). Consequently, the existence

and uniqueness of x̄ follows from Theorem 4 and the instability of x̄ follows from

Theorem 6. 2

The next result, Proposition 3, treats the case when f1, f2 are concave.

Proposition 3 Let β`−α` < 0 for ` = 1, 2. The map T2 has a positive fixed point

x̄ if and only if

1−m22

m12

>
m21

1−m11

, (43)

and any of the following conditions are satisfied:

(i) m11 ∈ (0, β1
α1

] and m22 ∈ ( β2
α2
, 1)

(ii) m11 ∈ ( β1
α1
, 1) and m22 ∈ (0, β2

α2
]

(iii) m11 ∈ ( β1
α1
, 1) and m22 ∈ ( β2

α2
, 1)

(iv) m11 ∈ (0, β1
α1

], m22 ∈ (0, β2
α2

] and (β2 − α2m22)(β1 − α1m11) < α1 α2m21m12

When x̄ exists, it is unique. If, in addition, (β2 − α2m22)(β1 − α1m11) 6=

α1 α2m21m12 and max{m11 +m12,m21 +m22} < 1, then x̄ is a global attractor on

int(R2
+).
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Proof. The functions f1, f2 are concave by (41). Therefore, Theorem 5 can be

applied. Since β` − α` < 0, then β`
α`

< 1 and all intervals in (i) through (iii)

are nontrivial. Condition (43) is equivalent to (A) of Theorem 5. Note that this

expression is well defined in each of the cases (i) through (iv). Also, if m11 ∈ (0, β1
α1

],

then m11
α1

β1
≤ 1, which is equivalent to (B1). Similarly, m22 ∈ (0, β2

α2
] is equivalent

to (C1).

If m11 ∈ ( β1
α1
, 1), then m11 α1−β1 > 0 and m11 < 1, in which case the equation

1 = m11 f
′
1(t) has a positive solution given by

t∗ =
β1(1−m11)−

√
β1m11 (α1 − β1)(1−m11)

m11 − 1
.

Consequently, m11 ∈ ( β1
α1
, 1) implies that (B2) is satisfied. Similarly, m22 ∈ ( β2

α2
, 1)

implies that (C2) is satisfied. The existence and uniqueness of x̄ follows from The-

orem 5. By Theorem 7, the origin is unstable and by Theorem 5, it is hyperbolic,

hence ρ(JT2(0)) > 1. Notice M = (mi,j) is irreducible and if we further assume

that max{m11 +m12,m21 +m22} < 1, then h+(M) < 1. Consequently,

f ′(∞) = max
`

{
lim sup
t→∞

f`(t)

t

}
= max

`

{
lim sup
t→∞

t+ α`
t+ β`

}
= 1 <

1

h+(M)
.

It follows from Theorem 3 that x̄ is a global attractor on int(R2
+). 2

It is worth mentioning that the global dynamics of (38) can be completely

characterized using general theory of cooperative systems of difference equations.

The example is presented only for illustrative purposes.

4.5 Analysis of System (II)

The map T : Rk
+ → Rk

+, given in (6), can be used to study more general

structured population models. We specifically show that T can be used to analyze

systems of the form (II).
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Let X be an ordered Banach space over R, with solid order cone X+. An

element x ∈ X is said to be positive if x ∈ int(X+). Let A be a nontrivial

monotone bounded linear operator (so AX+ ⊂ X+) such that the spectral radius

of A is less than one. Let b1, . . . , bk be k ≥ 1 linearly independent elements of

X+, let c1, . . . , ck be positive bounded linear functionals on X, and let f1, . . . , fk

be real valued functions as defined above. Consider the difference equation

xn+1 = A xn +
k∑
`=1

f`(c` xn) b`, x0 ∈ X+. (II)

Denote by F the map corresponding to (II), i.e.,

F (x) = A x +
k∑
`=1

f`(c` x) b`. (44)

Thus 0 ∈ X is a fixed point of F . Let C : X → Rk and B : Rk → X+ be the linear

operators

C(x) := (c1(x), . . . , ck(x)), and B(s1, . . . , sk) :=
k∑
`=1

s` b`.

Define M : Rk → Rk from (6) as

M := C(I − A)−1B, (45)

and refer back to the map T in (6), where now we have

T (y) = M(f1(y
(1)), . . . , fk(y

(k)))t = C(I − A)−1B(f1(y
(1)), . . . , fk(y

(k)))t (46)

We explore the relationship between fixed points of the map T in (46) and the

map F in (44).

4.5.1 Correspondence of Fixed Points

The first result in this section establishes a correspondence between the fixed

points of T and the fixed points of F .
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Theorem 8

(i) If x̄ ∈ X+ is a fixed point of F , then t̄ ∈ Rk
+ is a fixed point of T , where

t̄ := C(x̄). If, additionally, x̄ ∈ int(X+), then t̄ ∈ int(Rk
+).

(ii) Let x̄, ȳ ∈ X+ be distinct fixed points of F . Set s̄ = C(x̄) and t̄ = C(ȳ).

Then s̄ 6= t̄.

(iii) If t̄ ∈ Rk
+ is a fixed point of T , then x̄ =

∑k
`=1 f`(t̄`) (I−A)−1b` is a fixed point

of F in X+. Moreover, if t̄ 6= 0 and (I−A)−1b` ∈ int(X+) for ` ∈ {1, . . . , k},

then x̄ ∈ int(X+).

(iv) Let s̄ and t̄ be distinct positive fixed points of T . Set x̄ :=
∑k

`=1 f`(s̄`) (I −

A)−1b` and ȳ :=
∑k

`=1 f`(t̄`) (I − A)−1b`. If the functions f1, . . . , fk are

one-to-one, then x̄ 6= ȳ.

Proof. (i) If x̄ ∈ X+ is a positive fixed point of F , then x̄ = A x̄ +
∑k

`=1 f`(c` x̄) b`,

and

x̄ =
k∑
`=1

f`(c` x̄) (I − A)−1 b`.

Set t̄` := c`(x̄) for ` ∈ {1, . . . , k}, and t̄ := (t̄1, . . . , t̄k). Then,

t̄ = C(x̄) =
k∑
`=1

f`(c` x̄)C (I − A)−1 b` =
k∑
`=1

f`(t̄`)C (I − A)−1 b` = T (t̄).

If x̄ ∈ int(X+), then t̄` = c`(x̄) > 0 for ` ∈ {1, . . . , k}, so t̄ ∈ int(Rk
+).

(ii) If x̄ and ȳ are distinct positive fixed points of F such that C(x̄) = C(ȳ) =

(t1, . . . , tk), then

x̄ = A x̄ +
k∑
`=1

f`(t`) b` and ȳ = A ȳ +
k∑
`=1

f`(t`) b`. (47)

Combine both equations in (47) to get

x̄− ȳ = A(x̄− ȳ). (48)
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Since x̄ 6= ȳ, then (48) implies x̄ − ȳ is an eigenvector of A with corresponding

eigenvalue 1. This contradicts the hypothesis on the spectral radius of A. Thus

x̄ = ȳ.

(iii) If t̄ is a fixed point of T and x̄ =
∑k

`=1 f`(t̄`) (I − A)−1b`, then

C(x̄) =
k∑
`=1

f`(t̄`)C (I − A)−1b` = T (t̄) = t̄.

Therefore t̄` = c`(x̄), for ` ∈ {1, . . . , k}. From this and the definition of x̄,

(I − A) x̄ =
k∑
`=1

f`(t̄`) b` =
k∑
`=1

f`(c`(x̄)) b`, (49)

whence x̄ is a fixed point of F . If in addition t̄ 6= 0, then x̄ 6= 0. By assumption

(I − A)−1 b` > 0 for each ` ∈ {1, . . . , k}, hence solving for x̄ in (49) one can see

that x̄ is a linear combination (with nonnegative coefficients) of elements of the

interior of X+, thus t̄ 6= 0 implies x̄ > 0.

(iv) We have

(I − A)(x̄− ȳ) =
k∑
`=1

(f`(s̄`)− f`(t̄`)) b` (50)

By assumption, for some `0 we have s̄`0 6= t̄`0 , and since f`0 is one-to-one, f`0(s̄`0) 6=

f`0(t̄`0). By this relation and linear independence of the terms b`,
∑k

`=1(f`(s̄`) −

f`(t̄`)) b` 6= 0. Thus the left-hand side of equation (50) is not zero. That is, x 6= y.

2

There is a corollary to Theorem 8 that is useful when it is known that the

map T has either no positive fixed points or a unique positive fixed point.

Corollary 5 If T has no fixed points in int(Rk
+), then F has no fixed points in

int(X+). If T has a unique fixed point t̄ ∈ int(Rk
+), then F has a unique fixed point

x̄ ∈ int(X+), namely x̄ =
∑k

`=1 f`(t̄`) (I − A)−1b`.
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Corollary 5 allows much of the theory developed in Sections 4.3 and 4.4 to be

applied to systems of the form (II) by analyzing fixed points of the corresponding

map T . These relationships are illustrated in the example provided in Section

4.5.4. First, we explore a deeper connection between the map T in (46) and the

map F in (44), which involves the local stability character of the fixed point at the

origin.

4.5.2 A Linear Algebra Result

We will see that in the case when X = Rm in (II), there is a strong connection

between the stability of the origin in X as a fixed point of F and the stability of

origin as a fixed point of T . To establish this connection, we shall prove a linear

algebra result given in this subsection.

We will need the following lemma. We denote with Im the m × m identity

matrix, adj(A) the adjugate of a square matrix A (i.e., the transpose of the matrix

of cofactors of A), ρ(A) the spectral radius of A, and σ(A) the spectrum of A.

Lemma 3 Let A ∈ Rm×m
+ be an irreducible matrix with eigenvalues λ1, λ2, . . . , λm,

where λ1 denotes the spectral radius of A. Then (i) the matrix adj(λ1 Im −A) has

nonnegative entries, and (ii) tr[adj(λ1 Im − A)] = (λ1 − λ2) · · · (λ1 − λm).

Proof. For t > λ1 the matrix adj(t Im − A) is invertible, and,

adj(t Im − A) = det(t Im − A) (t Im − A)−1 . (51)

Note det(t Im−A) = (t−λ1) · · · (t−λm) > 0. Also, the Neumann series expansion

(Im − 1
t
A)−1 = I + 1

t
A + 1

t2
A2 + · · · and A irreducible imply that (t Im − A)−1

has positive entries.. Since adj(λ1 Im − A) = lim
t↓λ1

adj(t Im − A), it follows that

adj(λ1 Im−A) has nonnegative entries. For the proof of statement (ii), the relation

tr (adj(t I − A)) = det(t I − A) tr
(

(t I − A)−1
)

=
m∏
`=1

(t− λ`)
m∑
`=1

(t− λ`)−1 (52)
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implies

tr (adj(t I − A)) =
m∑
`=1

∏
j 6=`

(t− λ`) . (53)

Statement (ii) follows by taking t = λ1 in (53). 2

Proposition 4 Let A ∈ Rm×m
+ , B ∈ Rm×k

+ and C ∈ Rk×m
+ . Suppose A is irre-

ducible, ρ(A) < 1 and ρ(B C) 6= 0. Set E := (Im − A)−1B. Then,

(i) 1 ∈ σ(A+B C) if and only if 1 ∈ σ(C E)

(ii) Let ρ̄1 := ρ(A+B C) and ρ̄2 := ρ(C E). Then sgn (ρ̄1 − 1) = sgn (ρ̄2 − 1)

Proof. From Sylvester’s determinant identity [16] we have,

det((Im−A)−1) det(Im−A−B C) = det(Im−(Im−A)−1B C) = det(Ik−C (Im−A)−1B),

from which statement (i) follows.

For t ≥ 0, let ρ1(t) denote the spectral radius of A+t B C, and let ρ2(t) denote

the spectral radius of t C E. We claim that ρ`(t) is a monotonically increasing

function of t for t ≥ 0. Since for each t, ρ`(t) is a simple root of the characteristic

polynomial, by the Implicit Function Theorem ρ`(·) is a C(1) function of t. Define

the functions

φ1(t) := det (ρ1(t) Im − A− t B C) and φ2(t) := det (ρ2(t) Ik − t C E) .

Hence

φ1(t) = 0 and φ2(t) = 0 for t ≥ 0. (54)

Jacobi’s formula for the derivative of the determinant of a matrix function of a

real variable and the relations φ′1(t) = 0 and φ′2(t) = 0 give

ρ′1(t) =
tr (adj (ρ1(t) Im − A− t B C) B C )

tr (adj (ρ1(t) Im − A− t B C))
(55)
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ρ′2(t) =
tr (adj (ρ2(t) Ik − t C E) C E )

tr (adj (ρ2(t) Ik − t C E))
(56)

Note in relations (55), (56) the denominator is positive by (ii) of Lemma 3, and

the numerator is nonnegative by (i) of Lemma 3, that is, ρ1(t) ≥ 0 and ρ2(t) ≥

0 for t ≥ 0. Again by (i) of Lemma 3, at least one diagonal entry of each of

adj (ρ1(t) Im − A− t B C) and adj (ρ2(t) Ik − t C E) is positive. Given that the

matrices B C and C E have nonnegative entries and have at least one positive

diagonal entry (since ρ(BC) > 0 by hypothesis), it follows that the numerators

in (55), (56) are necessarily positive, that is, the functions ρ1(·) and ρ2(·) are

monotonically increasing.

We now verify that ρ1(t) takes values smaller than one and also larger than

one. Note that ρ1(0) = ρ(A) < 1. Choose t′ > ρ(B C)−1. By Corollary 8.1.19 in

[19], ρ(A+ t′B C) ≥ ρ(t′B C) = t′ ρ(B C) > 1, that is, ρ1(t
′) ≥ 1.

Since ρ1(t) takes values less than, greater than, and (by continuity) equal to

one, by statement (i) and monotonicity of ρ`, ` = 1, 2, it follows that ρ1(t) > 1 if

and only if ρ2(t) > 1, ρ1(t) < 1 if and only if ρ2(t) < 1, and ρ1(t) = 1 if and only

if ρ2(t) = 1. Statement (ii) of the proposition now follows from the latter relations

and the equalities ρ̄1 = ρ1(1) and ρ̄2 = ρ2(1). 2

Proposition 4 can now be utilized to discuss the relationship between the

stability character of the origin as a fixed point of the map T and as a fixed point

of the map F .

4.5.3 Stability of the Origin

We now take X = Rm with the standard order cone Rm
+ = {(x1, . . . , xm) :

x` ≥ 0, ` = 1, . . .m }. Let A ∈ Rm×m
+ , B ∈ Rm×k

+ and C ∈ Rk×m
+ . For ` = 1, . . . , k,

denote with c` the `-th row of C, and define c` x to be the inner product of c` and

x, that is c` x = c` · x. Suppose ρ(A) < 1, and that B has full column rank.
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The next result states that for system (I), the local stability character of

0 ∈ Rm as a fixed point of F is the same as the local stability character of 0 ∈ Rk

as a fixed point of T in (46). By JF (x) and JT (t) we denote the Jacobian matrices

of F and T at x and t respectively.

Theorem 9 If A is irreducible and ρ (B diag(f ′1(0), . . . , f ′k(0))C ) 6= 0, then the

following statements are true.

(i) ρ(JT (0)) = 1 if and only if ρ(JF (0)) = 1.

(ii) ρ(JT (0)) < 1 if and only if ρ(JF (0)) < 1.

(iii) ρ(JT (0)) > 1 if and only if ρ(JF (0)) > 1.

Proof. Set D0 := diag(f ′1(0), . . . , f ′k(0)) and E := (I − A)−1BD0. The Jacobian

matrix of the map T at 0 ∈ Rk is

JT (0 ) = C (I − A)−1BD0 = C E (57)

The Jacobian matrix of F at 0 ∈ Rm is

JF (0) = A+
k∑
j=1

f ′j(0)bjcj. = A+BD0C (58)

Set B̃ = BD0 in (58) and (57). In this case, we have

JT (0 ) = C (I − A)−1 B̃ and JF (0) = A+ B̃ C.

Now, comparison of 1 and the spectral radii ρ(A + B̃ C) and ρ(C E) is obtained

from Proposition 4, which gives the conclusion of the Theorem. 2

Combining the results from Section 4.3, Corollary 5, and Theorem 9, global

results can be established for systems of the form (II). A relevant question in this

regard is the following: Is it the case that when the map T from (46) has a globally
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asymptotically stable positive fixed point, then the map F from (44) has a globally

asymptotically stable positive fixed point? This question will be explored in future

work.

4.5.4 Examples

To illustrate the connection between all of the results of the preceeding sec-

tions, we consider an example of a system with the form (44) for k = 2, where the

functions are taken to be of Beverton-Holt type (4). This example requires results

established in Example 1.

Example 3: Consider the system of difference equations

xn+1 = A xn +
c1 xn

c1 xn + δ1
b1 +

c2 xn
c2 xn + δ2

b2 (59)

where xn, x0, b1, b2 ∈ Rm
+ , A ∈ Rm

+ × Rm
+ , δ1, δ2 > 0, and c1, c2 are positive row

vectors in Rm
+ . This system has the form given in (44) where f`(t) = t

t+δ`
is of

Beverton-Holt type. Denote by F3 : Rm
+ → Rm

+ the map corresponding to (59).

That is,

F3(y) = A y +
c1 y

c1 y + δ1
b1 +

c2 y

c2 y + δ2
b2 (60)

Define v` = (I −A)−1b` for ` = 1, 2 and let M ∈ R2
+ ×R2

+ be as in (45). That is,

M =

(
c1 v1 c1 v2

c2 v1 c2 v2

)
.

Consider the map T3 : R2
+ → R2

+ defined in (46), given by

T3

(
u
v

)
=

(
c1 v1f1(u) + c1 v2f2(v)
c2 v1f1(u) + c2 v2f2(v)

)
(61)

=

( c1 v1 u
δ1+u

+ c1 v2 v
δ2+v

c2 v1 u
δ1+u

+ c2 v2 v
δ2+v

)
,

Compare (61) to the map studied in Example 1, where mi,j = ci vj. There exists

a correspondence between the fixed points of T3 and the fixed points of F3 as

discussed in the previous section. This leads to the following claim:
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Claim 1 Suppose that

(δ2 − c2 v2)(δ1 − c1 v1) < c1 v2 c2 v1

The map F3 has a positive fixed point ȳ if and only if at least one of the following

conditions is satisfied:

(i) c1 v1 ≤ δ1 and c2 v2 > δ2 or c1 v1 > δ1 and c2 v2 ≤ δ2 .

(ii) c1 v1 > δ1 and c2 v2 > δ2.

(iii) c1 v1 ≤ δ1, c2 v2 ≤ δ2 and (δ2 − c2 v2)(δ1 − c1 v1) < c1 v2 c2 v1.

Furthermore, if it exists, ȳ is unique and locally asymptotically stable.

Proof. Under any of the conditions (i) through (iii), it follows from Proposition 1

that the map T3 from (61) has a unique positive fixed point x̄. The existence and

uniqueness of a positive fixed point ȳ for the map F3 then follows from Corollary

5.

Now, the local stability character of 0 ∈ R2
+ as a fixed point of T3 is the same

as the local stability character of 0 ∈ Rm
+ as a fixed point of F3 by Theorem 9. By

Theorem 7, 0 ∈ R2 is an unstable, hyperbolic fixed point of T3 and thus 0 ∈ Rm is

an unstable, hyperbolic fixed point of F3. By results of monotone systems, and an

argument similar to the one used in the proof of Theorem 7, this implies that the

unique positive fixed point of the map F3 is locally asymptotically stable. 2

Numerical Examples

Corresponding to Examples 1 and 2 from Section 4.4.3, we present two nu-

merical examples. For Example 1, consider system (33), where m11 = 4, m12 = 3,

127
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Figure 19: The curves φ1 and φ2 corresponding to system (62) can be seen in (a).
A solution (xn, yn) to (62) with (x0, y0) = (2, 6) can be seen in (b). The solution
quickly approaches the equilibrium point x̄ given in (63).

m21 = 1, m22 = 2, δ1 = 2, and δ2 = 1. That is, consider

xn+1 =
4xn

2 + xn
+

3 yn
1 + yn

, (62)

yn+1 =
xn

2 + xn
+

2 yn
1 + yn

, n = 0, 1, 2, . . . ,

where (x0, y0) ∈ (0,∞) × (0,∞). It can be easily verified that the conditions

set forth in Proposition 1 are satisfied. It follows that system (62) has a unique

positive equilibrium point. This equilibrium is given by

x̄ ≈ (4.849, 2.053), (63)

where the coordinates have been rounded to three decimal places. The equilibrium

x̄ is a global attractor on int(R2
+) by Proposition 1. The equilibrium point, along

with the parametric curves φ1 and φ2 for this case (defined in (15)), can be seen

in (a) of Figure 19. A solution to (62) for (x0, y0) = (2, 6) can be seen in (b) of

Figure 19.

For Example 2, Consider system (38), where m11 = 1
2
, m12 = 1

2
, m21 = 1,
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m22 = 2, α1 = 2, α2 = 1 and β1 = β2 = 4. That is, consider the system

xn+1 =
xn(xn + 2)

2(xn + 4)
+
yn(yn + 1)

2(yn + 4)
, (64)

yn+1 =
xn(xn + 2)

xn + 4
+

2 yn(yn + 1)

yn + 4
, n = 0, 1, 2, . . . .

It can be verified that system (64) satisfies the conditions of Proposition 2 and

therefore has a unique positive equilibrium point. The positive equilibrium is

given by

x̄ =
(√

969−27
12

, 3
√
969−41
44

)
≈ (0.344, 1.191).

Theorem 7 guarantees that the fixed point at the origin is locally asymptotically

stable and Theorem 6 allows us to conclude that x̄ is unstable. In fact, the eigen-

values of the Jacobian evaluated at x̄ are

λ1 ≈ 1.272 and λ2 ≈ 0.126,

and thus x̄ is a saddle point. It can also be verified that there do not exist any

minimal period two solutions in R2
+. Therefore, applying results from [20, 21, 22],

there exists the global stable manifold W s(x̄) and the global unstable manifold

W u(x̄) passing through x̄ and extending to the boundary of the first quadrant

(depicted in (b) of Figure 20). The region in the first quadrant below (resp.

above) the curve W s(x̄) is the basin of attraction of the origin (resp. the point

(+∞,+∞)) and the curve W s(x̄) is precisely the basin of attraction of E.

The equilibrium point, along with the parametric curves φ1 and φ2 for this

case (defined in (15)), can be seen in (a) of Figure 20. A solution of (64) with an

initial condition chosen from below the global stable manifold can be seen in (a)

of Figure 21 and a solution of (64) with an initial condition chosen from above the

global stable manifold be seen in (b) of Figure 21.
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Figure 20: The curves φ1 and φ2 corresponding to system (64) can be seen in
(a). The global stable and unstable manifolds, Ws and Wu, corresponding to the
interior saddle point x̄ can be seen in (b).
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Figure 21: A solution (xn, yn) to (64) with (x0, y0) = (3
4
, 1
4
) can be seen in (a).

The solution quickly converges to the origin. A solution (xn, yn) to (64) with
(x0, y0) = (1, 1) can be seen in (b). The solution approaches (+∞,+∞).
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Brauer, F. and Castillo-Chávez, C., Mathematical Models in Population Biology
and Epidemiology. New York: Springer-Verlag, 2001.
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