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ABSTRACT

We consider the system of difference equations

xn+1 = α xn
1 + β yn

, yn+1 = γ xn yn
xn + δ yn

, n = 0, 1, 2, . . . ,

where α,β , γ , δ, x0, y0 are positive real numbers. This system was
formulatedby P. H. Leslie in 1948 and the presentmanuscript provides
the most complete dynamical analysis to date. A boundedness and
persistence result along with global attractivity results for various
parameter regions are established.
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1. Introduction

A host-parasitoid model is a type of prey-predator model where the development of the
attacking species (parasitoid) depends on the quantity of the food species (host) made
available to it and the population of the food species depends on how many of its peers
survived the infestation [1,4]. Host-parasite models have a similar structure to that of
host-parasitoid models with the biggest difference being that the parasite may not kill
the host [1,3]. These models have attracted the attention of many authors in recent years
and several interesting systems are studied in [2,5,13,16,17]. One host-parasite model of
particular interest, formulated in 1948 by P. H. Leslie, is given by

N1(t + 1) = λ1 N1(t)
1 + (λ1 − 1) N2(t)

K2

, N2(t + 1) = λ2 N2(t)
1 + (λ2 − 1) K1 N2(t)

K2 N1(t)

, t = 0, 1, 2, . . . ,

(1)
where λ1, λ2 > 1 and K1,K2 are positive constants (see [11, p. 239]). The quantity N1
represents the population of the host and N2 represents the population of the parasite.
An increase in the parasite population N2 results in a decrease in the host population N1
and an increase in the ratio N2

N1
results in a decrease in the parasite population as they lack

resources to survive. See [11,12] for more information on (1). System (1) can be rewritten
as

xn+1 = α xn
1 + β yn

, yn+1 = γ xn yn
xn + δ yn

, n = 0, 1, 2, . . . , (2)

where α,β , γ , δ, x0, y0 are positive real numbers.

CONTACT Orlando Merino merino@uri.edu
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2 D. MCARDLE AND O. MERINO

System (2) has been studied by Q. Din and T. Donchev, who claim in Theorem 6 of [3]
that whenα, γ > 1 the unique positive equilibrium is a global attractor. However, the proof
in [3] is incorrect as we now explain. The analysis of system (2) in [3] relies on Theorem 5
of [3], which is a result that appeared first as Theorems 2.2.9 and 2.2.11 in the PhD thesis
of M. Nurkanović [14]. Also see [10]. A generalization of these results is Theorem 3 in [9].
The result of Nurkanović (or Theorem 3 of [9]) guarantees boundedness and persistence
of solutions to (2) on sets [m1,M1]× [m2,M2] that are invariant under the map associated
with the system. The purported proof of Theorem 6 in [3] failed to verify that nontrivial
invariant sets [m1,M1]×[m2,M2] exist, and therefore global attractivity of the equilibrium
was not established. In fact, no such sets exist: if [m1,M1]× [m2,M2] is an invariant subset
of the positive quadrant of the plane, then by monotonicity and invariance,

m1 ≤ αm1

1 + βM2
and

αM1

1 + β m2
≤ M1 . (3)

From (3), one obtains 1 + βM2 ≤ α and α ≤ 1 + βm2, hence m2 = M2. A similar
calculation gives m1 = M1, and it follows that the invariant set consists of just one point.
Consequently, Nurkanović’s result cannot be used to prove that the positive equilibrium
in (2) is a global attractor. The present manuscript provides a proof, among other things,
of the global attractivity of the unique positive equilibrium as well as the boundedness
and persistence of solutions to system (2) under certain parameter restrictions that include
those considered byDin andDonchev. The results in the coming sections provide themost
complete analysis to date of model (1) formulated by P. H. Leslie in 1948.

Before we state the main result of this paper, it is convenient to introduce the change of
variables

x′ = β

δ
x , y′ = β y.

This change of variables allows for the elimination of the parameters β and δ, and after
renaming variables, system (2) is transformed to

xn+1 = α xn
1 + yn

, yn+1 = γ xn yn
xn + yn

, n = 0, 1, 2, . . . . (4)

An elementary calculation gives that a positive equilibrium for (4) exists if and only if
α > 1 and γ > 1. When this equilibrium exists, it is unique and given by

( x̄+ , ȳ+) :=
(
α − 1
γ − 1

, α − 1
)
. (5)

Furthermore, if the positive equilibrium (5) exists, it is locally asymptotically stable [3].
The main result of this paper is Theorem 1, which is presented below.

Theorem 1: Assume α, γ are arbitrary positive real numbers. Then system (4) has a
positive equilibrium ( x̄+ , ȳ+) if and only if α > 1 and γ > 1. If it exists, the positive
equilibrium is unique and given by (5). For arbitrary positive numbers x0 and y0, let {(xn, yn)}
be given by (4). Then the following statements are true:

(i) If α < 1, then (xn, yn) → (0, 0).
(ii) If α = 1 and γ < 1, then yn → 0 and there exists x̄ ≥ 0 such that {xn} is

monotonically decreasing and converges to x̄.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 3

Figure 1. Parameter space regions. Here ‘B. & P.’ stands for bounded and persistent orbits, (x̄ , ȳ) stands for
orbits converge to a unique positive equilibrium, (x̄ , 0) stands for orbits converge to a point on the x-axis,
and so on.

(iii) If α = 1 and γ ≥ 1, then (xn, yn) → (0, 0).
(iv) If α > 1 and γ < 1, then xn → ∞ and yn → 0.
(v) If α > 1 and γ = 1, then xn → ∞ and, for some ȳ ≥ 0, yn → ȳ.
(vi) If 1 < α ≤ γ , then (xn, yn) → ( x̄+ , ȳ+). Furthermore, the positive equilibrium

( x̄+ , ȳ+) is globally asymptotically stable on (0,∞)× (0,∞).
(vii) If 1 < γ < α, the sequence {(xn, yn)} is bounded and persistent in (0,∞) × (0,∞).

Also, for some choices of γ , α there exist nontrivial periodic solutions.

The seven dynamical scenarios described in Theorem 1 are depicted in Figure 1 where
the various parameter regions are labelled according to the long-term behaviour of solu-
tions {(xn, yn)} of system (4).

Our proof of Theorem 1 can be described as consisting of threemain parts. The first part
comprises proofs of statements (i) through (v) regarding the global behaviour of solutions
to (4) in the absence of a positive equilibrium. This is done with elementary arguments in
Section 2.

The second part of our proof of Theorem 1, presented in Section 3, treats statement (vi)
regarding the global attractivity of the positive equilibriumwhen 1 < α ≤ γ . A well known
approach to proving global asymptotic stability of an equilibrium (hence global attractivity)
is to establish the existence of a nonnegative function L(x, y) that serves as a global, strict
Lyapunov function for the map associated with the system (Theorem 2.16 in [6]). Due
to the local asymptotic stability property of the equilibrium in our case, it is enough to
have that L(x, y) is a global strict Lyapunov function for the second iterate of the map. To
establish this, it is sufficient to verify {(x, y) : L(x, y) = 0} is a singleton set consisting of
the equilibrium point, and that for c > 0, the sub-level sets {(x, y) : L(x, y) ≤ c} satisfy
certain properties. Specifically, the sub-level sets must be a family of compact invariant
neighborhoods of the positive equilibrium that cover the positive quadrant and satisfy the
property that each such set is mapped into its interior under the second iterate of the map.
For this purpose, we perform a transformation that makes (1, 1) the unique equilibrium
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4 D. MCARDLE AND O. MERINO

Table 1. Some periodic points of system (4) for α = 1000, γ = 4. These (approximate) periodic points
were found numerically, and they can be calculated to any desired number of significant digits with
a computer algebra system such as Mathematica by using extended precision arithmetic and taking
advantage of the fact that the parameter values are natural numbers.

Point Period

(7.23296542408588, 119.37344586002276) 9
(2.9537477933807694, 74.9804098699995) 10
(1.315953175890067, 44.70579950089623) 11
(0.6162568330798077, 24.574047842527435) 12
(0.30216562897564875, 11.571433168943637) 13

point. Thenwe prove that the sub-level sets of theKobayashi internal metric on the positive
cone (see [8, p. 86, Lemma 3.3.5 (iv)]), parametrized as

Pμ := { (x, y) : 1
μ

≤ x ≤ μ , 1
μ

≤ y ≤ μ , 1
μ
x ≤ y ≤ μ x } , μ ≥ 1,

satisfy the desired properties (see Proposition 1 and Corollary 1). We do this without
any further explicit reference to Lyapunov Theory. We are thus able to establish global
attractivity of the positive equilibrium point when 1 < α ≤ γ .

The third part of our proof of Theorem 1, which concerns the remaining parameter
region 1 < γ < α, is presented in Section 4. We found that periodic solutions exist for
many parameter selections satisfying 1 < γ < α. For example, with α = 1000, γ = 4, the
unique equilibriumpoint (333, 999) coexists with several nontrivial periodic points, shown
in Table 1. Therefore global attractivity of the unique equilibrium does not necessarily hold
for parameters1 α, γ satisfying 1 < γ < α. However, the existence of periodic solutions
does not preclude the system from having other global properties. Indeed we establish
boundedness and persistence of solutions when 1 < γ < α (i.e. statement (vii) of Theorem
1) in Section 4. This is done as follows. A solution {(xn, yn)} to (4) is persistent if there
exists δ > 0 such that min (xn, yn) ≥ δ for all n ≥ 0. A logarithmic change of coordinates
is performed to make the phase space the whole plane, so that, per Proposition 2, the
question of boundedness and persistence of solutions to (4) is reduced to the question of
boundedness of solutions in the new coordinates. A cover of the plane by compact sets
Kτ with τ > 0 is constructed, such that for large enough τ , Kτ is invariant under the map
T̂ associated with the system in logarithmic coordinates. The map T̂ is given in Equation
(22), and the sets Kτ are introduced in Definition 1. Boundedness of solutions follows
from the existence of the sets Kτ and their corresponding properties. See Figure 2 for a
visual representation of this idea.

The sets Kτ , introduced in Section 4 of this paper, are constructed with the help of
certain auxiliary maps which are obtained from the main map of the system by applying
suitable changes (see the comments after Corollary 2). This approach may be applicable to
more general planar difference equations in order to prove boundedness of solutions. To
our knowledge, this is the first time that it has been implemented.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 5

(a) (b)

Figure 2. (a) The first few points of two orbits O1 and O2, having initial points P1 and P2. (b) A way to
prove that the orbits O1 and O2 are bounded is to find a compact set K (outlined) which is invariant
under the map T̂ , and that contains the initial point of the orbits. By invariance,K contains all the points
of the orbit.

2. Global behaviour in the absence of a positive equilibrium

This section presents a proof of statements (i) through (v) of Theorem 1. Suppose first that
α ≤ 1. Choose arbitrary positive real numbers x0 and y0. With (xn, yn) given by (4) for
n > 0, we have

xn+1 = α xn
1 + yn

< α xn ≤ xn for all n ≥ 0, (6)

and thus
xn converges to a nonnegative real number x̄. (7)

Assume α < 1. If x̄ > 0, then yn → α − 1 by (6), which is impossible for α < 1. Therefore
xn → 0 as n → ∞. From (4), yn → 0 as n → ∞ and statement (i) follows.

If α = 1, then there is a continuum of equilibrium points on the extended domain
(0,∞)× [0,∞), consisting of points of the form (x, 0) where x > 0.

With α = 1, we consider three cases: γ < 1, γ = 1, and γ > 1.
α = 1, γ < 1: From (4), yn+1 < γ yn, thus {yn} is decreasing and convergent to some

ȳ ≥ 0. If ȳ > 0, then from (4),

xn = yn+1 yn
γ yn − yn+1

→ ȳ2

γ ȳ − ȳ
= ȳ
γ − 1

. (8)

The last term in (8) is negative. This implies that ȳ = 0. From this and (7) we conclude
xn → x̄ > 0 and yn → 0. Statement (ii) follows.
α = 1, γ = 1: We have yn+1 = xn yn

xn+yn < yn, therefore {yn} is a decreasing sequence that
converges to some ȳ ≥ 0. From xn+1(1+ yn) = xn we have x̄ (1+ ȳ) = x̄. It follows that if
x̄ > 0, then ȳ = 0. But if x̄ = 0, yn+1(xn + yn) = xn yn implies ȳ (0+ ȳ) = 0 ȳ = 0, that is,
ȳ = 0. Therefore (xn, yn) → (x̄, 0) for some x̄ ≥ 0. We claim that x̄ = 0. Suppose x̄ > 0.
Consider the map R associated with (4) when α = γ = 1:

R(x, y) :=
(

x
1 + y

,
x y

x + y

)
, (x, y) ∈ (0,∞)× (0,∞).
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6 D. MCARDLE AND O. MERINO

The map R has a real analytic extension R̃ to a neighborhoodN ⊂ R
2 of (x̄, 0). It is shown

in [7] that ifN is small enough, then for every point (x, y) ∈ N \ {(x̄, 0)} there exists n > 0
such that R̃n(x, y) 	∈ N . This contradicts xn → x̄, so x̄ = 0. We conclude xn → 0 and
yn → 0.
α = 1, γ > 1: We claim x̄ = 0. Suppose this is not the case, i.e. x̄ > 0. Then 1 + yn =

xn+1
xn → 1, so yn → 0. Also,

yn+1

yn
= γ xn

xn + yn
→ γ > 1,

which implies yn 	→ 0. This contradicts the assumption, hence xn → 0. We have,

yn+2 = γ xn+1 yn+1

xn+1 + yn+1
= γ xn yn+1

(1 + yn)(xn+1 + yn+1)
<

γ xn
1 + yn

< γ xn .

Therefore, yn → 0 and statement (iii) follows.
Now, suppose that α > 1 and γ < 1. Using system (4),

yn+1 = γ xn yn
xn + yn

<
γ xn yn
xn

= γ yn for all n ≥ 0,

and thus yn → 0 as n → ∞. Furthermore, since α > 1, there exists N > 0 and A > 1 such
that α

1+yn > A for all n ≥ N . Then,

xn+1 = α xn
1 + yn

> A xn , n ≥ N . (9)

Consequently, xn → ∞ as n → ∞ and statement (iv) follows.
If α > 1 and γ = 1, we have

yn+1 = xn yn
xn + yn

< yn for all n ≥ 0.

Thus there exists ȳ ≥ 0 such that yn ↓ ȳ. If ȳ = 0, then from (9) we have xn → ∞. If
ȳ > 0, then from (4), xn (yn − yn+1) = yn+1 yn for n ≥ 0. As n → ∞, yn+1 yn → ȳ2 > 0,
which implies xn → ∞ and statement (v) follows. �

3. Global attractivity of the positive equilibrium

This section provides a proof of statement (vi) of Theorem 1. Throughout the section we
assume that 1 < α ≤ γ . Under this assumption, there exists a unique positive equilibrium
(5) for system (4). Furthermore, the change of variables

x′ =
(
α − 1
γ − 1

)
1
x
, y′ = (α − 1)

1
y

conjugates system (4) to

xn+1 = a xn + (1 − a)
xn
yn

, yn+1 = (1 − b) xn + b yn, n = 0, 1, 2, . . . , (10)
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 7

(a) (b)

Figure 3. (a) The setsP2 andP4. (b) The boundary of a setPμ (solid) and its image S(∂Pμ) (dashed).

where the parameters a and b are

a = 1
α

and b = 1
γ
. (11)

The map associated with (10) on the positive quadrant is given by

S(x, y) =
(
a x + (1 − a)

x
y
, (1 − b) x + b y

)
, (x, y) ∈ (0,∞)× (0,∞) . (12)

The assumption 1 < α ≤ γ is equivalent to

0 < b ≤ a < 1, (13)

in which case the map S has a unique positive fixed point, namely (1, 1). We shall prove
statement (vi) of Theorem 1 by proving a similar result for (10) under assumption (13).

For μ ≥ 1, let

Pμ := { (x, y) : 1
μ

≤ x ≤ μ , 1
μ

≤ y ≤ μ , 1
μ
x ≤ y ≤ μ x } .

The sets P2 and P4 can be seen in Figure 3. Note that for each μ > 1, the set Pμ is the
convex hull of the points

P1 = (μ,μ), P2 = (1,μ), P3 = ( 1
μ
, 1), P4 = ( 1

μ
, 1
μ
), P5 = (1, 1

μ
), P6 = (μ, 1) . (14)

Some properties of the sets Pμ are given in Proposition 1 below.
Proposition 1: The following statements are true:

(i) (1, 1) ∈ Pμ for each μ > 1, and P1 = {(1, 1)}.
(ii) ∪{Pμ : μ > 1} = (0,∞)× (0,∞).
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8 D. MCARDLE AND O. MERINO

(iii) For every (x, y) 	= (1, 1) there exists ν > 1 such that (x, y) ∈ ∂Pν .
(iv) S(Pμ) ⊂ Pμ for each μ > 1.
(v) S2(Pμ) ⊂ int(Pμ) for each μ > 1.

Statements (i) through (iii) of Proposition 1 are obviously true, so here we only prove
(iv) and (v). Before we do so, we state a corollary to Proposition 1 that is equivalent to
statement (vi) of Theorem 1.
Corollary 1: For every (x, y) ∈ (0,∞)× (0,∞), Sn(x, y) → (1, 1).

Proof: If (x, y) ∈ (0,∞)× (0,∞), then (ii) of Proposition 1 implies (x, y) ∈ Pμ for some
μ > 1. By (iv) of Proposition 1, Sn(x, y) ∈ Pμ for all n ≥ 1 and thus {Sn(x, y)} has at
least one accumulation point (x̄, ȳ). Suppose (x̄, ȳ) 	= (1, 1), then by (iii) there exists ν > 1
such that (x̄, ȳ) ∈ ∂Pν . By continuity of S and by (iv) and (v), Sn(x, y) ∈ int(Pν) for all
n sufficiently large. This is not possible since (x̄, ȳ) is an accumulation point of {Sn(x, y)}
and therefore (x̄, ȳ) = (1, 1). Since (1, 1) is the only accumulation point of the bounded
sequence {Sn(x, y)}, it follows that Sn(x, y) → (1, 1).

Now, for the proof of (iv) and (v) of Proposition 1, let μ > 1 be fixed but arbitrary, and
let P1, . . . , P6 be the extreme points or vertices of Pμ given in (14). We claim first that

S(P
) ∈ Pμ for 1 ≤ 
 ≤ 6. (15)

From (12) and (14),

S(P1) = S(μ,μ) = (1 + a (μ− 1),μ) ∈ [P1, P2],
S(P3) = S

(
1
μ
, 1
)

=
(
1
μ
, 1
μ

+ b
(
μ−1
μ

))
∈ [P3, P4],

S(P4) = S
(
1
μ
, 1
μ

)
=
(
1 + a

(
1−μ
μ

)
, 1
μ

)
∈ [P4, P5],

S(P6) = S
(
μ, 1

) = (μ,μ+ b (1 − μ)) ∈ [P6, P1].

Furthermore, S(P2) = S(1,μ) = (a+ 1−a
μ

, 1+b (μ− 1)) and it can be readily seen that
the following inequalities are true:

1
μ

≤ a+ 1−a
μ

≤ μ , 1
μ

≤ 1+ b(μ− 1) ≤ μ , 1
μ
(a+ 1−a

μ
) ≤ 1+ b(μ− 1) ≤ μ (a+ 1−a

μ
).

That is, S(P2) ∈ Pμ. Finally,

S(P5) = S
(
1, 1
μ

)
=
(
a (1 − μ)+ μ, b

(
1−μ
μ

)
+ 1

)
,

and one can similarly conclude that S(P5) ∈ Pμ. Thus (15) has been established.
To prove (iv), it is sufficient to prove S(∂Pμ) ⊂ Pμ. We have

S([P1, P2]) =
{(
(a (μ− 1)+ 1)((μ− 1) t + 1)

μ
,

b (μ− μ t + t − 1)+ (μ− 1) t + 1
)

: 0 ≤ t ≤ 1
}
.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 9

Hence S([P1, P2]) is a line segmentwith endpoints in the setPμ, which is convex. Therefore,
S([P1, P2]) ⊂ Pμ. Similar considerations lead to S([P2, P3]) ⊂ Pμ, S([P4, P5]) ⊂ Pμ, and
S([P5, P6]) ⊂ Pμ.

For 0 ≤ t ≤ 1, let x(t) and y(t) be defined by the equation

(x(t), y(t)) := S
(
(1 − t) P3 + t P4

) =
(
μ+ at − aμ t
μ (μ+ t − μ t)

,
1 + b (− 1 + μ+ t − μ t)

μ

)
.

Then S([P3, P4]) = {(x(t), y(t)) : 0 ≤ t ≤ 1 }, and for 0 ≤ t ≤ 1,

dx
dt

= (1 − a)(μ− 1)
(μ+ t − μ t)2

> 0 and
dy
dt

= b (1 − μ)

μ
< 0. (16)

Hence, from (15) and (16), S([P3, P4]) ⊂ [ 1
μ
, 1]×[ 1

μ
, 1] andwe conclude S([P3, P4]) ⊂ Pμ.

A similar proof (omitted here) yields S([P6, P1]) ⊂ Pμ. This completes the proof of (iv).
For part (v), from the proof of part (iv), if (x, y) ∈ Pμ, then S(x, y) ∈ ∂Pμ only

when (x, y) ∈ {P1, P3, P4, P6}, and otherwise S(x, y) ∈ int(Pμ) and S2(x, y) ∈ int(Pμ).
In addition, for 1 ≤ 
 ≤ 6, S(P
) 	∈ {P1, P3, P4, P6}, so S2(P
) ∈ int(Pμ). It follows that
S2(Pμ) ⊂ int(Pμ). �

4. Boundedness and persistence of solutions

A proof of boundedness and persistence of solutions of system (4) for 1 < γ < α is
presented in this section, which corresponds to the first part of statement (vii) of Theorem
1. The second part of (vii) concerning the existence of nontrivial periodic points is justified
in the Introduction (Section 1), see Table 1 and associated comments.

4.1. Structure of the Proof of Statement (vii) of Theorem 1

Throughout the section we shall assume the inequality

1 < γ < α. (17)

Under this assumption, there exists a unique positive equilibrium (5) for system (4). The
change of variables

x′ =
(
α − 1
γ − 1

)
1
x
, y′ =

(
1

α − 1

)
y

conjugates system (4) to

xn+1 = a xn + (1 − a) xn yn, yn+1 = yn
(1 − b) xn yn + b

, n = 0, 1, 2, . . . , (18)

where a and b are as in (11). The map corresponding to (18) is given by

T(x, y) =
(
a x + (1 − a) x y ,

y
(1 − b) x y + b

)
, (x, y) ∈ (0,∞)× (0,∞). (19)

Assumption (17) becomes
0 < a < b < 1, (20)
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10 D. MCARDLE AND O. MERINO

in which case the map T has a unique positive fixed point, namely (1, 1). We shall prove
(vii) of Theorem 1 by proving a similar statement for (18) under assumption (20).

It is useful to consider logarithmic coordinates. Denote with L and E the planar maps
defined for (x, y) ∈ (0,∞)× (0,∞) and (u, v) ∈ R

2, respectively by

L(x, y) := ( ln (x) , ln (y)) and E(u, v) := ( eu , ev). (21)

Set T̂ := L ◦ T ◦ E. That is,

T̂(u, v) =
(
ln ( a eu + (1 − a) eu+v ) , ln

(
ev

(1 − b) eu+v + b

))
, (u, v) ∈ R

2 . (22)

Thus T̂ is a conjugate of T for which the origin is the (unique) fixed point. An immediate
consequence of the definition of T̂ is Proposition 2 presented below.
Proposition 2: Let (x, y) be an arbitrary element of (0,∞) × (0,∞). Then the sequence
{Tn(x, y)} is bounded and persists in (0,∞)×(0,∞) if and only if {T̂n( L(x, y) )} is bounded
in R

2.
It can also be shown that bounded subsets of R

2 are contained in T̂-invariant compact
sets, as described in Proposition 3.
Proposition 3: Suppose 0 < a < b < 1. Then for any bounded set B ⊂ R

2 there exists a
T̂-invariant compact set K such that B ⊂ K.

Propositions 2 and 3 have the following corollary, which is precisely statement (vii) of
Theorem 1.
Corollary 2: Let (x, y) be an arbitrary element of (0,∞) × (0,∞). Then the sequence
{Tn(x, y)} is bounded and persists in (0,∞)× (0,∞).

The remainder of this section is devoted to proving Proposition 3. The proof involves
constructing a family of compact setsKτ that satisfy the properties set forth in Proposition
3 for τ taken to be sufficiently large. Figure 4 shows a typical setKτ . The boundary consists
of five curves, three of which D̂′0, D̂′2, and D̂′4 are linear segments. The remaining two
curves D̂′1 and D̂′3 are derived from careful analysis of the map’s behaviour on certain
regions of the plane, away from the origin. Indeed, the curves D̂′1 and D̂′3 are subsets
of invariant curves of the maps M̂ and N̂ given in Equation (23), which approximate
asymptotically T̂ on quadrants II and IV respectively. The maps M̂ and N̂ are obtained
from T̂ by removing terms that can be neglected in selected regions of the plane. The maps
obtained in this way have invariant curves that can be found explicitly. These invariant
curves are used in turn to define D̂′1 and D̂′3.

Before exploring these ideas rigorously, we first present basic results about T and T̂ as
well as results related to the two auxiliarymaps, M̂ and N̂ , that are useful in the construction
of Kτ and for the arguments that follow.

4.2. Ancillary properties andmaps

If F = (f1, f2) is a map on a planar region R, the equilibrium curves of F are the sets
{(x, y) ∈ R : f1(x, y) = x} and {(x, y) ∈ R : f2(x, y) = y}. The equilibrium curves of the
maps T and T̂ given in (19) and (22) play a prominent role in our proof. Before we go any
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 11

Figure 4. A setKτ whose boundary consists of the sets D̂′

 for 0 ≤ 
 ≤ 4.

further, we adopt the following convention in order to simplify notation use:

unless otherwise restricted, (x, y) ∈ (0,∞)× (0,∞) and (u, v) ∈ R
2.

The equilibrium curves of the maps T are as follows:

C1 := {(x, y) : y = 1} and C2 := {(x, y) : x y = 1}.

The equilibrium curves C1 and C2 have (1, 1) as their only common point, and the
complement in the positive quadrant of their union consists of four disjoint connected
components

R1 = {(x, y) : y > 1 and x y > 1}, R2 = {(x, y) : y > 1 and x y < 1},
R3 = {(x, y) : y < 1 and x y < 1}, R4 = {(x, y) : y < 1 and x y > 1}.

That is,
(0,∞)× (0,∞) \ (C1 ∪ C2) =

⋃
{R
 : 1 ≤ 
 ≤ 4}.

Similarly, the equilibrium curves of the map T̂ are

Ĉ1 := {(u, v) : v = 0} and Ĉ2 := {(u, v) : u + v = 0} .

The curves Ĉ1 and Ĉ2 have (0, 0) as their only common point, and the complement in the
plane of their union consists of four disjoint connected components

R̂1 = {(u, v) : v > 0 and u + v > 0}, R̂2 = {(u, v) : v > 0 and u + v < 0},
R̂3 = {(u, v) : v < 0 and u + v < 0}, R̂4 = {(u, v) : v < 0 and u + v > 0}.

That is,
R
2 \ (Ĉ1 ∪ Ĉ2) =

⋃
{R̂
 : 1 ≤ 
 ≤ 4}.

The sets R
 and R̂
, 1 ≤ 
 ≤ 4, are depicted in Figure 5. Now, denote with se the
South-East partial order on R

2 whose nonnegative cone is the standard fourth quadrant
{(u, v) : u ≥ 0, v ≤ 0}. That is, (u1, v1) se (u2, v2) if and only if u1 ≤ u2 and v1 ≥ v2.
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12 D. MCARDLE AND O. MERINO

Figure 5. Equilibrium curves and complementary regions for T and T̂ , respectively.

Similarly, denote with ne the North-East partial order on R
2 whose nonnegative cone is

the standard first quadrant {(u, v) : u, v ≥ 0}. That is, (u1, v1) ne (u2, v2) if and only if
u1 ≤ u2 and v1 ≤ v2 (see [15]). Basic monotonicity properties can then be used to prove
Proposition 4.
Proposition 4: The following statements are true:

(i) (x, y) se T(x, y) for (x, y) ∈ R1 (i′) (u, v) se T̂(u, v) for (u, v) ∈ R̂1
(ii) (x, y) ne T(x, y) for (x, y) ∈ R2 (ii′) (u, v) ne T̂(u, v) for (u, v) ∈ R̂2
(iii) T(x, y) se (x, y) for (x, y) ∈ R3 (iii′) T̂(u, v) se (u, v) for (u, v) ∈ R̂3
(iv) T(x, y) ne (x, y) for (x, y) ∈ R4 (iv′) T̂(u, v) ne (u, v) for (u, v) ∈ R̂4

We shall need the maps

M(x, y) :=
(
a x ,

y
(1 − b) x y + b

)
, (x, y) ∈ (0,∞)× (0,∞),

and

N(x, y) :=
(
(1 − a) x y ,

1
b
y
)
, (x, y) ∈ (0,∞)× (0,∞),

along with the corresponding conjugate maps M̂ and N̂ on R
2 given in terms of the maps

from (21) by
M̂ := L ◦ M ◦ E and N̂ := L ◦ N ◦ E. (23)

To prove the boundedness and persistence of the solutions of system (18), it is important
to understand the behaviour of the solutions for small values of x and y. Close inspection
of the map in (19) reveals that T behaves similarly to the map M for values of y close to
zero and T behaves similarly to the mapN for values of x close to zero. In this way,M and
N offer valuable insight into the behaviour of solutions of system (18). In Lemmas 1 and
3 that follow, it is proven that there exist invariant curves for the maps M̂ and N̂ in R̂2
and R̂3, respectively. These curves have important properties when related to the map T̂
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 13

and play a role in the definition of the family of compact sets Kτ needed for the proof of
Proposition 3. Lemma 2 gives a property of the image of certain line segments in R̂3. This
is useful when proving the invariance of the sets Kτ that are constructed.

We shall need the constant r given by

r := ln (b)
ln (a)

. (24)

Under assumption (20), r satisfies

0 < r < 1. (25)

Lemma 1, given below, details an invariant curve corresponding to the map M̂ along
with properties of its image under T̂ .
Lemma 1: Let τ be a fixed but otherwise arbitrary positive real number. Let f̂1 :
(− ∞, τ ] → R be the function given by

f̂1(u) = − ln
(
eτ
(
er(u−τ) + 1−b

b−a
(
er(u−τ) − eu−τ

) ) )
. (26)

and let D̂1 and D̂′
1 be the sets

D̂1 :=
{
(u, v) ∈ R

2 : v = f̂1(u), u ≤ τ
}
,

D̂′
1 :=

{
(u, v) ∈ R

2 : v = f̂1(u), 0 ≤ u ≤ τ , v ≤ 0
}
.

Then f̂1( · ) is a convex smooth function,

M̂(D̂1) ⊂ D̂1, and T̂(D̂′
1) ⊂

{
(u, v) ∈ R

2 : f̂1(u) < v < 0, u < τ
}
. (27)

Figure 6 shows the curve D̂′
1 described in Lemma 1 along with its image under the map

T̂ . An extension of D̂′
1 and its corresponding image in the third quadrant are also included

to illustrate the relation T̂(D̂′
1) ⊂

{
(u, v) ∈ R

2 : f̂1(u) < v < 0, u < τ
}
, which is needed

in the arguments used in Section 4.4.

Proof: A straightforward calculation gives

f̂ ′′
1 (u) = (1 − a)(1 − b)(r − 1)2e−rτ+ru+τ+u(

(1 − b)eu − (1 − a)er(u−τ)+τ
)2 ,

so f̂ ′′
1 (u) is well defined and positive for u ≤ τ + 1

r−1 ln ( 1−b
1−a ). This inequality, together

with (20) and (25), imply that f̂ ′′
1 (u) is defined for u ≤ τ , and consequently v is a convex

function of u for u ≤ τ .
With the change of coordinates x = eu, y = ev , together with x0 := eτ and

D1 :=
{
(x, y) : 1

x0 y = ( xx0 )
r + 1−b

b−a

(
( xx0 )

r − x
x0

)
, x ≤ eτ

}
,
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14 D. MCARDLE AND O. MERINO

Figure 6. The curve D̂′
1 (thick, solid) and its image under T̂ (thick, dashed) along with an extension of

D̂′
1 (thin, solid) and its image under T̂ (thin, dashed).

the inclusionM(D1) ⊂ D1 is equivalent to M̂(D̂1) ⊂ D̂1. We prove the former. Suppose
(x, y) ∈ D1, and set

(x′, y′) := M(x, y) =
(
a x,

y
(1 − b) x y + b

)
.

Then (x′, y′) ∈ D1 if and only if x′ ≤ eτ and

(1 − b) x y + b
x0 y

=
(
a x
x0

)r
+ 1 − b

b − a

((
a x
x0

)r
− a x

x0

)
. (28)

Through algebraic manipulation, Equation (28) may be rewritten as

b
x0 y

= −(1 − b)
x
x0

+
(
a x
x0

)r
+ 1 − b

b − a

((
a x
x0

)r
− a x

x0

)
. (29)

The equality ar = b and further simplification in (29) give the equation

1
x0 y

=
(
x
x0

)r
+ 1 − b

b − a

(
x
x0

)r
− 1 − b

b − a

(
x
x0

)
. (30)

Since by assumption (x, y) ∈ D1, we have (30) is true. It is also the case that x′ = a x ≤
a eτ < eτ . This proves (x′, y′) ∈ D1.

To prove the second inclusion in (27), consider (u, v) ∈ D̂′
1, and set (u′, v′) = M̂(u, v)

and (u′′, v′′) = T̂(u, v). Thus (u′, v′) ∈ D̂1. From the definition of M̂ and T̂ we have

u′ < u′′ and v′ = v′′ . (31)

Consider the function ψ(t) with t ≤ τ , given by

ψ(t) = er(t−τ) + 1 − b
b − a

(
er(t−τ) − et−τ

)
.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 15

Figure 7. The curve D̂′
2 (solid) and its image under T̂ (dashed).

Since (u′, v′) ∈ D̂1 then v′ = f̂1(u′) = − ln (eτ ψ(u′)). Therefore, e−τ−v′ = ψ(u′). This
fact, (31), and the increasing character of ψ give

e−τ−v′′ = e−τ−v′ = ψ(u′) < ψ(u′′) . (32)

Inequality (32) implies f̂1(u′′) < v′′, which together with

v′′ = ln
(

ev

(1 − b) eu+v + b

)
< 0,

complete the proof of the second inclusion in (27). See Figure 6.

Lemma 2, given below, details a property of the image under T̂ of certain line segments.
Lemma 2: Let p and q be arbitrary negative numbers such that q

p < r, where r is defined in
(24). Let D̂2 be the line in the plane through (p, 0) and (0, q), and let D̂′

2 be the line segment
whose endpoints are (p, 0) and (0, q). Then T̂(D̂′

2) is a subset of the connected component of
R
2 \ D̂2 that contains the origin.

Proof: For u ≤ 0, v < 0, consider the real valued function

φ(u, v) := − ln ((1 − b)eu+v + b)
ln (a + (1 − a)ev)

.

We claim

φ(u, v) ≤ − ln (b)
ln (a)

= −r, u ≤ 0, v < 0. (33)

It canbe easily shown that for fixed v ≤ 0,φ(u, v) is increasing inu. Therefore, it is sufficient
to verify (33) for φ(0, v). Equivalently, with y := ev , we will verify that f (y) ≤ −r for all
y ∈ (0, 1), where

f (y) = − ln ((1 − b)y + b)
ln (a + (1 − a)y)

.

Notice,

t + ln (1 − t) < 0 for t ∈ (0, 1). (34)
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16 D. MCARDLE AND O. MERINO

Therefore, for r ∈ (0, 1) and y ∈ (0, 1),
∂

∂r

[
((1 − ar) y + ar) ln ((1 − ar) y + ar)

1 − ar

]

= ar ln (a)((1 − ar)(1 − y)+ ln (1 − (1 − ar)(1 − y)))
(1 − ar)2

> 0, (35)

where (34) was used with t = (1 − ar)(1 − y) to conclude (35). The inequality in (35),
along with b = ar from (24), imply

((1 − b) y + b) ln ((1 − b) y + b)
1 − b

= ((1 − ar) y + ar) ln ((1 − ar) y + ar)
1 − ar

<
((1 − a) y + a) ln ((1 − a) y + a)

1 − a
. (36)

It follows from (36) that for all y ∈ (0, 1),

d
dy

[f (y)] =
(1−a) ln ((1−b)y+b)

(1−a)y+a − (1−b) ln ((1−a)y+a)
(1−b)y+b

( ln ((1 − a)y + a))2
< 0.

Consequently, f (y) ≤ f (0) = − ln (b)
ln (a) = −r, and statement (33) is established. Now,

assume (u, v) ∈ D̂′
2. Since

T̂(u, v)− (u, v) = (
ln (a + (1 − a) ev) , − ln ( (1 − b) eu+v + b)

)
, (37)

the slope of the line through (u, v) and T̂(u, v) is precisely φ(u, v). By Proposition 4,
T(u, v) se (u, v). From the latter relation, (33), (37), and the hypothesis on the slope of
D̂2, namely − q

p being greater than −r, it follows that T̂(u, v) and (0, 0) belong to the same
component of R

2 \ D̂2. The curve D̂′
2 and its image under T̂ can be seen in Figure 7.

The final lemma in this subsection details an invariant curve corresponding to the map
N̂ along with properties of its image under T̂ . Prior to stating the lemma, we verify that

T̂({(u, v) : u + v ≥ 0, u ≤ 0, v > 0}) ⊂ R̂1. (38)

Consider (u, v) ∈ {(s, t) : s + t ≥ 0, s ≤ 0, t > 0} such that u + v = 0 and notice

T̂(u, v) = ( ln (a eu + (1 − a)), v). (39)

Since u < 0 implies ln (a eu+(1−a)) > u, it follows from (39) that T̂(u, v) ∈ R̂1. Similarly,
consider (u, v) ∈ {(s, t) : s + t ≥ 0, s ≤ 0, t > 0} such that u = 0 and notice

T̂(u, v) =
(
ln (a + (1 − a)ev), ln

(
ev

(1 − b)ev + b

))
.

Since v > 0, T̂(u, v) is in the first quadrant of the plane and thus belongs to R̂1. By
continuity of T̂ , (38) follows. This relation will be helpful in proving Lemma 3 below.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 17

Figure 8. The curve D̂′
3 (solid) and its image under T̂ (dashed).

Lemma 3: Let c0 be a fixed but otherwise arbitrary negative real number, and set

c1 := − 1
2 − ln (1−a)

ln (b) and c2 := − 1
2 ln (b) . (40)

Let D̂3 and D̂′
3 be the sets

D̂3 := { (u, v) ∈ R
2 : u = c2 v2 + c1 v + c0 },

D̂′
3 := D̂3 ∩ {(u, v) : u ≤ 0, v ≥ 0}.

Then,

N̂(D̂3) ⊂ D̂3 and T̂(D̂′
3) ⊂ { (u, v) : u > c2 v2 + c1 v + c0 , v > 0} . (41)

Figure 8 shows the curve D̂′
3 described in Lemma 3 along with its image under the map

T̂ and illustrates the relation T̂(D̂′
3) ⊂ { (u, v) : u > c2 v2 + c1 v + c0 , v > 0}.

Proof: Let (u, v) ∈ D̂3 (i.e. u = c2 v2 + c1 v + c0) and set

(u′, v′) := N̂(u, v) = (
ln ((1 − a) eu+v) , ln ( 1b e

v)
)
. (42)

Then,

c2 (v′)2 + c1 v′ + c0
= c2 ( v − ln (b) )2 + c1 ( v − ln (b))+ c0
= c2 v2 − 2 c2 ( ln (b)) v + c2 ( ln (b))2 + c1 v − c1 ln (b)+ c0
= u − 2 c2 ( ln (b)) v + c2 ( ln (b))2 − c1 ln (b).

(43)

A straightforward calculation using (40) gives

−2 c2 ( ln (b)) = 1 and c2 ( ln (b))2 − c1 ln (b) = ln (1 − a) . (44)

Consequently, from (42), (43) and (44) we have

c2 (v′)2 + c1 v′ + c0 = u + v + ln (1 − a) = ln ( (1 − a) eu+v) = u′.
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18 D. MCARDLE AND O. MERINO

This proves the first relation in (41). To prove the second relation in (41), let (u, v) ∈ D̂′
3.

Since 0 ≤ v ≤ q2 and u ≤ 0,

(1 − b)eu+v + b < max{eu+v , 1} ≤ max{ev , 1} = ev ,

and it follows that

ln
(

ev

(1 − b)eu+v + b

)
> 0.

Consequently, T̂(u, v) ∈ {(s, t) : t > 0}. Now, define

Q− := {(u, v) ∈ D̂′
3 : u + v ≤ 0} and Q+ := {(u, v) ∈ D̂′

3 : u + v > 0}. (45)

Clearly, D̂′
3 = Q− ∪ Q+. We consider two cases separately. If (u, v) ∈ Q+, then by

Proposition 4we have (u, v) se T̂(u, v). Combining thiswith (38), it follows that T̂(u, v) ∈
{ (s, t) : s > c2 t2 + c1 t + c0 , t > 0}. If now (u, v) ∈ Q−, then by Proposition 4, (u, v) ne
T̂(u, v). Also, note that for x := eu and y := ev ,

T(x, y)− N(x, y) =
(
a x ,− (1 − b) x y

b( (1 − b) x y + b)

)
.

Hence N(x, y) se T(x, y), which implies N̂(u, v) se T̂(u, v). Now, N̂(u, v) ∈ D̂3 by the
first part of this proof and the relation T̂(u, v) ∈ { (s, t) : s > c2 t2 + c1 t + c0 , t > 0}
follows. The curve D̂′

3 along with its image under T̂ can be seen in Figure 8.

4.3. Construction of a family of compact sets

We begin by establishing some useful inequalities. We shall need the following values,
which can be obtained from Equation (26):

f̂1(0) = ln

(
(b − a)eτ(r−1)

(b − a)+ (1 − b)(1 − eτ(r−1))

)
(46)

and

f̂ ′
1(0) = −1 − b − (1 − a) r eτ (1−r)

1 − b − (1 − a) eτ (1−r) . (47)

Lemma 4, presented below, is easily established from relations (20), (25), (46) and (47).
Lemma 4: There exists τ1 > 0 such that

f̂1(0) < 0 , for τ ≥ τ1,

and

f̂ ′
1(0) < 0 , for τ ≥ τ1.

The sets Kτ are introduced next.
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Figure 9. A setKτ whose boundary consists of the sets D̂′

 for 0 ≤ 
 ≤ 4.

Definition 1: Let τ ∈ R+ be such that τ ≥ τ1 with τ1 as in Lemma 4, and set

q1 := f̂1(0) , (48)

p2 := − f̂1(0)

f̂ ′
1(0)

, and

q2 := −c1 +√
c12 − 4 c2 p2
2 c2

, (49)

where f̂1(0), f̂ ′
1(0), c1 and c2 are given in (40), (46), and (47). Let the set Kτ be the convex

hull of the sets D̂′

, 0 ≤ 
 ≤ 4, where

D̂′
0 is the line segment joining (τ , 0) and (τ ,−τ).

D̂′
1 is the curve given in Lemma 1 with endpoints (τ ,−τ) and (0, q1).

D̂′
2 is the line segment with endpoints (0, q1) and (p2, 0).

D̂′
3 is the parabolic arch in Lemma 3 with endpoints at (p2, 0) and (0, q2).

D̂′
4 is the line segment with endpoints (0, q2) and (τ , 0).

Remark 1: In Definition 1, q1 < 0 and p2 < 0 by Lemma 4. Therefore, Kτ is a compact
and convex neighborhood of the origin such that ∂Kτ = ∪4


=0D̂′

. See Figure 9.

Remark 2: In order to simplify notation, dependence on τ has been suppressed in the
terms q1, p1, q2, and D̂′


, 0 ≤ 
 ≤ 4.
The proof of Proposition 3 involves an asymptotic argument on the parameter τ as it

relates to the compact set Kτ . It is useful for us to first describe the asymptotic behaviour
of q1, q2, and p2 when τ → +∞.
Claim 1: The asymptotic behaviour of q1, q2, and p2 is as follows:

(i) q1 = (r − 1)τ + O(1) as τ → +∞.
(ii) p2 = ( r−1

r
)
τ + O(1) as τ → +∞.

(iii) q2 =
√
2 ln (b) r−1

r
√
τ + O(1) as τ → +∞.
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20 D. MCARDLE AND O. MERINO

Proof: From (46) and (48),

q1 = (r − 1)τ + ln (b − a)− ln ((b − a)+ (1 − b)(1 − eτ(r−1)))

= (r − 1)τ + ln

(
1

1 + 1−b
b−a

(
1 − eτ(r−1)

)
)
.

Since r ∈ (0, 1), (i) follows. Similarly,

p2 = − f̂1(0)

f̂ ′
1(0)

= − 1

f̂ ′
1(0)

ln

(
(b − a)eτ(r−1)

(b − a)+ (1 − b)(1 − eτ(r−1))

)

= (1 − r)

f̂ ′
1(0)

τ − ln (b − a)

f̂ ′
1(0)

+ ln ((b − a)+ (1 − b)(1 − eτ(r−1)))

f̂ ′
1(0)

.

Since r ∈ (0, 1) and limτ→∞ f̂ ′
1(0) = −r, (ii) follows. Finally, from (49) and (ii),

q2 =
−c1 +

√
c21 − 4 c2 p2
2c2

=
√

−p2
c2

+ O(1)

=
√

−
(
r − 1
c2 r

)
τ + O(1),

and thus (iii) follows from substituting c2 = −1/(2 ln (b)).

4.4. Proof of Proposition 3

To prove Proposition 3, we establish first that any given bounded set B ⊂ R
2 is contained

in Kτ for τ large enough.
Claim 2: Let B ⊂ R

2 be bounded. Then for all τ large enough, B ⊂ Kτ .

Proof: Since Kτ is convex, the quadrilateral S whose endpoints are (τ , 0), (0, q1), (p2, 0)
and (0, q2) is such that S ⊂ Kτ (see Figure 10). Therefore, Claim 1 implies that for all large
enough τ , Kτ contains B.

Next we prove that for all τ large enough, T̂(D̂′

) ⊂ Kτ for 0 ≤ 
 ≤ 4. Once this has

been established, it follows that Kτ is T̂-invariant for large τ and the proof of Proposition
3 will be complete. The boundary of Kτ along with its image under the map T̂ can be seen
in Figure 11. We assume in Claims 3 through 7 that τ ≥ τ1.
Claim 3: T̂(D̂′

0) ⊂ Kτ .

Proof: Let us first verify that the endpoints of T̂(D̂′
0), namely the points T̂(τ , 0) and

T̂(τ ,−τ), belong to Kτ . Notice T̂(τ , 0) = (
τ ,− ln

(
(1 − b) eτ + b

) )
satisfies

− ln
(
(1 − b) eτ + b

)
> −τ , hence T̂(τ , 0) ∈ Kτ . Also, T̂(τ ,−τ) = ( ln ( a eτ +

(1 − a)),−τ) satisfies 0 < ln ( a eτ + (1 − a)) < τ . Since (τ ,−τ) ∈ D̂′
1, it follows from

Lemma 1 that T̂(τ ,−τ) ∈ Kτ , so both endpoints of T̂(D̂′
0) belong to Kτ .
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 21

Figure 10. The quadrilateral Sτ with Sτ ⊂ Kτ .

Figure 11. Boundary of the setKτ (solid) and its image under T̂ (dashed).

We now show that T̂(D̂′
0) is a curve linearly ordered in the ne partial order. We may

write D̂′
0 = {(τ ,−τ t) : 0 ≤ t ≤ 1}. For 0 ≤ t ≤ 1 set

(ũ(t), ṽ(t)) := T̂((τ ,−τ t)) =
(
ln
(
a eτ + (1 − a) eτ(1−t) ) , ln ( e−τ t

(1−b) eτ(1−t)+b

) )
.

(50)
Then T̂(D̂′

0) = {(ũ(t), ṽ(t)) : 0 ≤ t ≤ 1}. From (50),

dũ
dt

= − (1 − a)τ eτ(1−t)

(1 − a) eτ(1−t) + a eτ
< 0 and

dṽ
dt

= − b τ eτ t

(1 − b)eτ + b eτ t
< 0.

Thus both ũ(t) and ṽ(t) are decreasing functions of t in [0, 1], so T̂(D̂′
0) is a curve linearly

ordered in the ne partial order. It follows that T̂(D̂′
0) is a subset of the closed rectangular

region R determined by the vertices T̂(τ , 0) and T̂(τ ,−τ). Since the second coordinate of
T̂(τ ,−τ) is equal to−τ and D̂′

1 is the graph of a convex function, it follows from (27) that
R ⊂ Kτ , and consequently, T̂(D̂′

0) ⊂ Kτ .
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22 D. MCARDLE AND O. MERINO

Claim 4: T̂(D̂′
1) ⊂ Kτ .

Proof: For (u, v) ∈ D̂′
1 arbitrary but fixed, let (ũ, ṽ) be given by

(ũ, ṽ) = T̂(u, v) =
(
ln (a eu + (1 − a) eu+v) , ln

(
ev

(1 − b) eu+v + b

))
.

By the second relation in (27) of Lemma 1, and convexity of Kτ and D̂1, it is sufficient
to verify that ṽ < 0. Notice (u, v) ∈ D̂′

1 implies u > 0, v < 0, and (1 − b) eu+v + b >
(1 − b) ev + b > ev . It follows that ṽ < 0.

Claim 5: T̂(D̂′
2) ⊂ Kτ .

Proof: The line segment D̂′
2 has slope − q1

p2 = f̂ ′
1(0). Now

f̂ ′
1(0)+ r = (1 − b)(1 − r) erτ

(b − 1)erτ + (1 − a) eτ
= (1 − b)(1 − r)
(b − 1)+ (1 − a) eτ(1−r) > 0.

Thus the hypothesis − q1
p2 > −r of Lemma 2 is satisfied. Now, let L be the line through

(0, q1) and (p2, 0) and let L0 be the connected component of R
2 \ L that contains the

origin. Lemma 2 guarantees T̂(D̂′
2) ⊂ L0. Also, note T̂(D̂′

2) is linearly ordered in the se
partial order, which we verify next. We may write D̂′

2 = {(p2 t, (1 − t) q1) : 0 ≤ t ≤ 1}.
For 0 ≤ t ≤ 1 set

(ũ(t), ṽ(t)) := T̂((p2 t, (1 − t) q1))

=
(
ln
(
a ep2 t + (1 − a) ep2 t+(1−t) q1

)
, ln

(
e(1−t) q1

(1 − b) ep2 t+(1−t) q1 + b

))
,

(51)

then T̂(D̂′
2) = {(ũ(t), ṽ(t)) : 0 ≤ t ≤ 1}. From (51),

dũ
dt

= a p2 + (1 − a)(p2 − q1)e(1−t) q1

a + (1 − a) e(1−t) q1
and

dṽ
dt

= −p2 (1 − b)eq1+p2 t + b q1 eq1 t

(1 − b)eq1+p2 t + b eq1 t
.

(52)
Using statements (i) and (ii) of Claim 1 and (52) we conclude that for τ large enough,
ũ(t) is a decreasing function of t ∈ [0, 1] and ṽ(t) is an increasing function of t ∈ [0, 1].
Consequently, T̂(D̂′

2) is a curve linearly ordered in these partial order and is thus a subset
of the rectangular region R determined by the initial and final points. Hence

T̂(D̂′
2) ⊂ R ∩ L0. (53)

Note that T̂(0, q1) ∈ Kτ by Claim 4 and T̂(p2, 0) ∈ Kτ by Lemma 3. It follows from (53)
and the convexity of Kτ that T̂(D̂′

2) ⊂ Kτ .

Claim 6: For all τ large enough, T̂(D̂′
3) ⊂ Kτ .
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Proof: Suppose (u, v) ∈ D̂′
3. From (22),

T̂(u, v) =
(
ln
(
aeu + (1 − a)eu+v) , ln( ev

(1 − b)eu+v + b

))
.

By statement (41) in Lemma 3,

T̂(u, v) ∈ {(s, t) : s > c2 t2 + c1 t + c0 , t > 0}. (54)

Now, let L be the line through (0, q2) and (τ , 0). Then R
2 \ L has two connected compo-

nents, one of which, L0, contains the origin. As a result of (54), to complete the proof it
suffices to verify that T̂(u, v) belongs to L0. In other words, for τ large enough,

1
τ
ln
(
aeu + (1 − a)eu+v)+ 1

q2
ln
(

ev

(1 − b)eu+v + b

)
< 1. (55)

Set

τ := 1 − 1
τ
ln
(
aeu + (1 − a)eu+v)− 1

q2
ln
(

ev

(1 − b)eu+v + b

)
. (56)

Then (55) is equivalent to
τ > 0, (57)

for τ large enough. Consider the sets Q+ and Q− defined in (45). We verify (57) for
(u, v) ∈ Q− and for (u, v) ∈ Q+ separately. Suppose (u, v) ∈ Q−. In this case, a eu +
(1 − a)eu+v is a weighted average of two numbers that are less than 1 which implies that
ln (aeu + (1− a)eu+v) < 0. Consequently, T̂(u, v) ∈ {(s, t) : s ≤ 0, t > 0}. Combining this
with (54), (57) follows. Now suppose (u, v) ∈ Q+. From (56),

τ q2τ = τq2 − q2 ln (a eu + (1 − a)eu+v)− τ ln
(

ev

(1 − b)eu+v + b

)
= τ(q2 − v)+ τ ln ((1 − b)eu+v + b)− q2(u + v)− q2 ln (ae−v + 1 − a).

(58)

By convexity, e(1−b)(u+v)+b·0 ≤ (1 − b)eu+v + b e0. That is,

(1 − b)(u + v) ≤ ln ((1 − b)eu+v + b). (59)

Recognizing that ln (ae−v + 1 − a) < 0 for v ≥ 0 and combining (58) and (59),

τ q2 ≥ τ(q2 − v)+ τ(1 − b)(u + v)− q2(u + v)
= τ(q2 − v)+ (u + v)(τ (1 − b)− q2). (60)

From Claim 1, we can consider τ large enough such that q2 < (1 − b)τ . Therefore, since
u + v > 0 and 0 < v ≤ q2, (60) implies τ ≥ 0. If τ = 0, then (60) implies v = q2 and
u + v = 0, which contradicts (u, v) ∈ Q+. Consequently, (57) holds.

Claim 7: For all τ large enough, T̂(D̂′
4) ⊂ Kτ .
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24 D. MCARDLE AND O. MERINO

Proof: We have D̂′
4 = {(t τ , (1 − t) q2) : t ∈ [0, 1]}. For t ∈ [0, 1], let (ũ(t), ṽ(t)) be given

by

(ũ(t), ṽ(t)) = T̂(t τ , (1 − t) q2) (61)

=
(
ln
(
aetτ + (1 − a)etτ+(1−t)q2

)
, ln

(
e(1−t)q2

(1 − b)etτ+(1−t)q2 + b

))
.

From (61),

dũ
dt

= (1 − a)(τ − q2)eq2 + a τ eq2t

(1 − a)eq2 + a eq2t
, (62)

dṽ
dt

= −τe
q2+tτ (1 − b)+ b q2 eq2t

b eq2t + (1 − b)eq2+tτ . (63)

Using statement (iii) of Claim 1 along with (62) and (63), we can conclude for τ large
enough that ũ(t) is an increasing function of t ∈ [0, 1] and ṽ(t) is a decreasing function of
t ∈ [0, 1]. As a consequence,

T̂(D̂′
4) is linearly ordered in the se partial order. (64)

We also have

T̂(τ , 0) =
(
ln
(
aeτ + (1 − a)eτ

)
, ln
(

1
(1 − b)eτ + b

))
= (

τ ,− ln
(
(1 − b)eτ + b

)) ∈ D̂′
0. (65)

In light of (64) and (65), to prove the claim, it is sufficient to verify that T̂(D̂′
4) is in a

suitable component of the complement of the line through (0, q2) and (τ , 0), for τ large
enough. More precisely, we wish to verify

1
τ
ln
(
aetτ + (1 − a)etτ+(1−t)q2

)
+ 1

q2
ln

(
e(1−t)q2

(1 − b)etτ+(1−t)q2 + b

)
< 1. (66)

For fixed τ , define

ψτ (t) := q2 ln
(
a + (1 − a)e(1−t)q2

)
− τ ln

(
(1 − b)etτ+(1−t)q2 + b

)
.

Equation (66) is equivalent to

ψτ (t) < 0 for 0 ≤ t ≤ 1. (67)

We have,

ψ ′
τ (t) = −e(1−t)q2

(
(1 − b)τ (τ − q2)etτ

b + (1 − b)etτ+(1−t)q2
+ (1 − a)q22

a + (1 − a)e(1−t)q2

)
< 0. (68)

Finally, ψτ (0) < 0 follows from Claim 6 and thus (68) implies (67).
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This completes the proof of Proposition 3 and thus, by Corollary 2, of statement (vii)
from Theorem 1.

Note

1. We do not know any easily testable conditions on α, γ with 1 < γ < α to determine whether
nontrivial periodic solutions exist.
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