
© 0 - Now that we are familiar with the terminology of DIFFERENTIAL EQUATIONS, we can learn one the main techniques that can be used to actually solve a differential equation: SEPARATION OF VARIABLES.


* Our focus in this section will be on first-order differential equations II.e. PEs with only a first derivative) that have an important property:
DEAN: [SEPARABLE DE]:
A diff eq that can be wrimev as

$$
\frac{d y}{d x}=f(x) \cdot g(y) \quad \text { or } \quad \frac{d y}{d x}=\frac{f(x)}{g(y)} \quad g(y) \neq 0
$$

Ex. Which of the following differential equations are SEPARABLE?
(A) $\frac{d y}{d x}=x^{2} y+y=y\left(x^{2}+1\right)$
[B] $d y d x=x+y$
$C_{d y}^{d x}=e^{x^{2}+y}=e^{x^{2}} e^{y}$

STEP 1: WRITE AL $y^{\prime}$ ' Ow LEFT i $x^{\prime}$ on RIGHT (ALGESRA) $d y d x$ can be tented as a fraction!
STEP 2: INTEGRATE BOTH SIDES.
STEP 3: SOWE for y (If POSSiBLE).

Ex 2. Find the general solution to the following differential equations using SEPARATION OF VARIABLES
(A) $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$

Sol:
(1) $y^{2} d y=x^{2} d x$
(2)

$$
\begin{aligned}
& \int y^{2} d y=\int x^{2} d x \\
& y^{3} / 3+C=\frac{x^{3}}{3}+C_{2} \\
& \frac{y^{3}}{3}=\frac{x^{3}}{3}+C_{2}-C_{1} \\
& \frac{y^{3}}{3}=\frac{x^{3}}{3}+C \\
& y^{3}=x^{3}+3 C=C
\end{aligned}
$$

CHeck!
LAS: $\frac{d y}{d x}=\frac{1}{\beta}\left(x^{3}+C\right)^{-\frac{2}{3}} \cdot B x^{2}$

$$
=\frac{x^{2}}{\left(x^{3}+c\right)^{2 / 3}}
$$

$$
\begin{array}{ll}
\frac{y^{3}}{3}=\frac{x^{3}}{3}+\left(C_{2}-C_{1}\right. & \quad \text { RUS: } \frac{x^{2}}{y^{2}}=\frac{x^{2}}{\left(\sqrt[3]{x^{3}+C}\right)^{2}} \\
\frac{y^{3}}{3}=\frac{x^{3}}{3}+C \\
y^{3}=x^{3}+\left(3 C=C \quad y=\sqrt[3]{x^{3}+C}\right.
\end{array}
$$

(3)
(B) $(y+x y) y^{\prime}=2$

Sol:

$$
\begin{aligned}
& (y+x y) \frac{d y}{d x}=2 \Rightarrow y(1+x) \frac{d y}{d x}=2 \\
& \int y d y=\int \frac{2}{1+x} d x<x \neq-1 \\
& y^{2} \frac{2}{2}=2 \ln |1+x|+C \\
& y^{2}=4 \ln |1+x|+C
\end{aligned}
$$

$$
y= \pm \sqrt{4 \ln |1+x|+c} \text { GENERAL } \text { SOLA. }
$$

（c）$\frac{d y}{d x}=\frac{y x^{2}}{y+\sin (y)} \quad \int(y+\sin (y)) d y=\int 2 x^{2} d x$
sol：

$$
\frac{y^{2}}{2}-\cos (y)=\frac{2 x^{3}}{3}+C
$$

$$
\begin{aligned}
& \text { (⿴囗) } \frac{d y}{d t}=t^{2} y \xrightarrow{y \neq 0} \int \frac{d y}{y}=\int t^{2} d t \\
& \begin{array}{l}
\text { Sol: } f y=0 \\
\text { dy } d y=0 r \\
\text { det }
\end{array} \quad e^{\ln |y|=\left(t^{\frac{t^{3}}{3}}+c\right)} \\
& \text { so } y=0 \text { İB } \\
& |y|=e^{c} e^{t / 3} \\
& y= \pm e^{c} e^{t^{3} / 3} \\
& y=c e^{t 3 / 3}
\end{aligned}
$$

Ex 3: Find the particular solution of each differential equation that satisfies the given initial condition (ie. solve each INITIAL VALUE PROBLEM)
(A) $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}, y(0)=4$

Sol: GEN SOW (from ABOVE)
Apply INTMAL COWD

$$
\begin{aligned}
& \sin \operatorname{con} \\
& y(0)=4
\end{aligned} \quad 4=\sqrt[3]{C} \text { so } C=64
$$

Particular sow $y=\sqrt[3]{x^{3}+64}$
[B] $\quad(y+x y) y^{\prime}=2, y(0)=3$
Sol: GEN Sow (from ABOVE). $y= \pm \sqrt{4 \ln |1+x|+c}$
Apply INiTIal COWD

$$
y(0)=3
$$

$$
3=\sqrt{4 \ln \|_{n} 1+c}
$$

$$
c=9
$$

Part. Sow. $y=\sqrt{4 \ln |1+x|+9}$

$$
\begin{aligned}
& \text { [E] } x y^{\prime}+4=y^{2} \rightarrow x \frac{d y}{d x}=y^{2}-4 \longrightarrow \frac{d y}{y^{2}-4}=\frac{d x}{x} \\
& \text { sol: } \int \frac{d y}{y^{2}-4}=\int \frac{d x}{x} \Rightarrow \int \frac{d y}{(y+2)(y-2)}=\int \frac{d x}{x} \\
& \int \frac{-1 / 4}{y+2}+\frac{1 / 4}{y-2} d y=\int \frac{d x}{x} \Rightarrow \frac{-1}{4} \ln |y+2|+\frac{1}{4} \ln |y-2|=\ln |x|+C \\
& \frac{1}{4}(\ln |y-2|-\ln |y+2|)=\ln |x|+C \\
& \frac{1}{4}\left(\ln \left|\frac{y-2}{y+2}\right|\right)=\ln |x|+C \\
& e^{\left(\ln \left|\frac{y-2}{y+2}\right|\right.}=(4 \ln |x|+C) \\
& \left|\frac{y-2}{y+2}\right|=e^{c} e^{4 \ln |x|} \\
& \frac{y-2}{y+2}= \pm e^{c} e^{\ln \left(x^{4}\right)} \\
& \xrightarrow{\frac{y-2}{y+2}=\frac{c x^{4}}{1} \quad \sqrt{\frac{a}{6}=\frac{c}{d}}} \begin{array}{l}
\frac{a}{a}=\frac{c}{d+c}
\end{array}
\end{aligned}
$$


(AKA perpendicular)
** Given a family of solution curves that satisfy a differential equation. We will find another collection of curves that are perpendicular to the original family. These new curves are called ORTHOGONAL TRAJECTORIES.

DEF N: [ORTHOGONAL TRAJECTORY]
AN ORTHOGONAL TRAJECTORY Of $A$ framing of wees IS A EMpire THAT InTersects each member of originalfamily Perpenticularing.

Some Efictucin pions IN ELectric Figs, forces cures are $\perp$ To POTENTIAL CRESS

EX. GEN. SOW $\Rightarrow y=C x \sim$ family of WRNES. \&AD.E.

TO FID
ORTHOGONAL TRATECTORTES GIVEN A family of ceres.
(1) find a dee. the family satisfies

$$
\frac{d y}{d x}=\square
$$

(2) ElIminate the arbitrary constant by using original
(3) find orthogonal diE. Dy taking negrtave reciprocal
(4) Solve it to find orthog. trajectories.

Ex 4. Find the ORTHOGONAL TRAJECTORIES of the family of curves given by:
因 $y=k x^{3} \sim$ Sow for $k: k=\frac{y}{x^{3}}$
Sol: (1) $\frac{d y}{d x}=3 k x^{2}$
(2) $\frac{d y}{d x}=3 \cdot \frac{y}{x^{3}} \cdot x^{2} \Rightarrow \frac{d y}{d x}=\frac{3 y}{x}$
(3) $\frac{d y}{d x}=\frac{-x}{3 y}$ D.E of ORTHOG. TRAJECTBLES.
(4) Sows it: $\int y d y=\int \frac{-x}{3} d x$

$$
\begin{aligned}
& \frac{y^{2}}{2}=\frac{-x^{2}}{6}+C \\
& 3 y^{2}+x^{2}=C
\end{aligned}
$$




* Let's look at a few more applications of differential equations. We will determine appropriate differential equations to model certain situations and we will then be able to solve them!

NOTE: $y=\operatorname{Sume}$ Quantity.

$$
\underset{\substack{\text { CHANGE } \\
\text { IN } y \\
\text { OVER } \\
t}}{ } \frac{d y}{d t}=\frac{\text { RATE }}{\text { IN }}-\begin{gathered}
\text { RATE } \\
\text { OUT }
\end{gathered}
$$

Ex 5. A tank contains 30 lbs of sugar dissolved in 200 gallons of water. A solution that contains 0.04 lbs of sugar per gallon of water is pumped into the tank at a rate of 20 gallons $/ \mathrm{min}$. The solution is the tank is kept thoroughly mixed, and is drained at the same rate ( 20 gallons/min). Let $y(t)$ represent the amount of sugar (in lbs) in the tank after $t$ minutes.
(A) Write an IVP that models this situation (i.e. a differential equation and initial condition)
Sol

IVF: $\quad \frac{d y}{2 t}=0.8-\frac{y}{10} \quad y(0)=30$
sol:

$$
\begin{aligned}
& \text { (B) Solve the DE from part }[A] \quad \frac{d y}{d t}=\frac{8-y}{10} \\
& \text { Sol: Sown it! } \\
& \text { firs } C \\
& y(0)=30 \quad 30-c e^{-t / 10} \\
& y=8-c e^{0} \Rightarrow c=-22 \\
& y=8+22 e^{-t / 10} \text { PART SOW. }
\end{aligned}
$$

How much sugar is in the tank after 20 minutes?
Sol:

$$
\begin{aligned}
y(20)= & 8+22 e^{-2} \mathrm{lbs} \\
= & 10.98 \mathrm{lbs}
\end{aligned}
$$

