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: Now that we are familiar with the terminology of PIFFERENTIAL

EQUATIONS, we can learn one the main techniques that can be used to
actually solve a differential equation: SEPARATION OF VARIABLES.
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9€ Our focus in this section will be on first-order differential equations (l.e. PEs with only a
first derivative) that have an important property:
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Bx.. Which of the following differential equations are SEPARABLE?
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2_. Find the general solution to the following differential equations using
=  SEPARATION OF VARIABLES
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x3: Fmd ’fhe particular solution of each differential equation that satisfies the given
initial condition (i.e. solve each INITIAL VALUE PROBLEM)
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%3 Given a family of solution curves that satisfy a differential equation. We will
find another collection of curves that are perpendicular to the original family.
These new curves are called ORTHOGONAL TRAJECTORIES.
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5( l-[- Find the ORTHOGONAL TRAJECTORIES of the family of curves given by:
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Let's look at a few more applications of differential equations. We will determine
appropriate differential equations to model certain sitvations and we will then be
able to solve them!




ExS A tank contains 30 Ibs of sugar dissolved in 200 gallons of water. A solution that
contains 0.04 Ibs of sugar per gallon of water is pumped into the tank at a rate of
20 gallons/min. The solution is the tank is kept thoroughly mixed, and is drained at
the same rate (20 gallons/min). Let y(t) represent the amount of sugar (in Ibs) in
the tank after t minutes.

E Write an IVP that models this sitvation (i.e. a differential equation and initial
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How much suaar is in the tank after 20 minutes?
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