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We will learn what a PIFFERENTIAL EQUATION (PE) is and will explore some
basic properties of them. We will also learn how PEs ¢an be used to model
certain real world situations.
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5 Ex | The following are

differential equations
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Moff The ORVER of a Differential Equation is the power of the
- \hiqhesf derivative.
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Q'- What does it mean to find a SOLUTION of a differential
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= A SOLUTION of a DE is a FUNCTION y(x) such

BeZ. Verify that each

that both sides of the DE are equat:

function is a solution to the specified PIFFERENTIAL EQUATION.
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There are two different terms that are vsed for solutions to differential

equations: PARTICULAR SOLUTIONS and the GENERAL SOLUTION
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For the differential equation:

¥=3C

= " Find 3 PARTICULAR SOLUTIONS and then find the GENERAL SOLUTION
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3 A common type of question in the field of differential equations is called an INITIAL
VALUE PROBLEM (IVP). Here, you will be given a differential equation and an initial
condition that the function (i.e. solution) needs to satisfy. The goal is to find a
PARTICULAR SOLUTION that satisfies the differential equation AND the initial

condition.
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Ex 5: The general solution to a differential equation is given by: y: Ce"x

Find the particular solution that satisfies the initial condition: H(‘%
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NUTE: If a particular solution has the form y=K for some fixed constant K then we
=1 call this solution a (aka equilibrium solution). To find all
constant solutions:
1. Llet y=K for a fixed constant K
2. Input y=K into the PE (Note y'=0)
3. Solve for K (if possible)

QB_E(D. Find all of each differential equation (if any exist)
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*¥% Just by glancing at a differential equation, we can tell a lot about the
BEHAVIOR of SOLUTIONS of the DE.

dyp0 => 4w THoReASING |
dyﬂxm => U T Decrhtng!

Q,? For each differential equation, sketch a graph that depicts the behavior
of solutions to the DE.
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¥% PDifferential equations can be used to model certain systems where a quantity
changes over time. One of the most powerful applications comes when modeling

populations

M= (Akagnoc. P =00
Qx A population is modeled by the differential equation

0< P£0® For what values of P is the population INCREASING?
P>lo» For what values of P is the population PECREASING?

e Find all EQUILIBRIUM SOLUTIONS (P=8) €= 106

e Sketch a plot illustrating this behavior.
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