

(50): Using calculus techniques we will learn how to find the length of certain curves... This is called ARC LENGTH

PART2: How Can we fan ${ }^{2}$

* Using calculus techniques, we can derive a formula for ARC LENGTH.

Ex 1. Find the ARC LENGTH of $y=4 \sqrt{x^{3}}$ on the inter val $0 \leqslant x \leqslant 1$. Graph the function and indicate the length that was found.

Ex Write the ARC LENGTH of each curve (on the specified interval) as a definite integral with respect to the indicated variable.

[A] $y=\sin (x)$ on $0 \leqslant x \leqslant \pi$ (w.r.t x) Sol:

$$
\begin{aligned}
& \text { B) } y=2 x^{4} \text { on } 0 \leq x \leq 1 \text { (wert } x \text {) } \\
& \text { sol: }
\end{aligned}
$$

[C] $y=2 x^{4}$ on $0 \leq x \leq 1$ (w.r .ty)

Ex 3. Find the ARC LENGTH of the curve $y=\frac{1}{2} x+1$ oN $0 \leq x \leq 4$. Verify your answer using geometry!

Ex4. Find the exact length of the curve $y=\frac{x^{3}}{3}+\frac{1}{4 x}$ for $1 \leqslant x \leqslant 3$

