
(G) We have learned how to compute the definite integral: provided that:

- The limits a and b are finite

$$
\int_{a}^{b} f(x) d x
$$

- The function $f(x)$ is continuous on $[a, b]$

If these conditions are not satisfied we have what is called an IMPROPER INTEGRAL and we will learn how to compute them!
(1) Bris inc functions:

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty}\left(\frac{1}{t^{p}}\right)= & \lim _{t \rightarrow \infty}\left(t^{p}\right)= \\
\lim _{t \rightarrow \infty}\left(e^{t}\right)= & \lim _{t \rightarrow \infty}\left(e^{-t}\right)= \\
\lim _{t \rightarrow \infty}(\ln (t))= & \lim _{t \rightarrow \infty}(c)=
\end{array}
$$

(2) 20450 NTH functions:

- Degree of numerator $>$ degree of denominator $\lim _{t \rightarrow \infty}\left(\frac{t^{3}+2 t^{2}-4}{t^{2}-8}\right)=$
- Degree of numerator < degree of denominator $\lim _{t \rightarrow \infty}\left(\frac{t^{2}-8}{t^{3}+2 t^{2}-4}\right)=$
- Degree of numerator $=$ degree of denominator $\lim _{t \rightarrow \infty}\left(\frac{t^{3}+2 t^{2}-4}{4 t^{3}-8}\right)=$
(3)ONTMS5CDED UnITS
* A sketch of graph helps!

$$
\lim _{t \rightarrow 2}\left(\frac{1}{t-2}\right)=
$$

(4) 5 [il ${ }^{2}$

$\lim _{t \rightarrow \infty}\left(\frac{2 t}{e^{t}}\right)=$
$\lim _{t \rightarrow \infty}\left(t e^{-t}\right)=$

Definition of an Improper Integral of Type 1

(a) If $\int_{a}^{t} f(x) d x$ exists for every number $t \geqslant a$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

provided this limit exists (as a finite number).
(b) If $\int_{t}^{b} f(x) d x$ exists for every number $t \leqslant b$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

provided this limit exists (as a finite number).
The improper integrals $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

In part (c) any real number a can be used

Ex. Determine if each of the following improper integrals is CONVERGENT or DIVERGENT. If
(A) $\int_{2}^{\infty} e^{-8 x} d x$

Sol: ${ }^{2}$

$\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x=$
$\int_{1}^{\infty} \frac{4}{\sqrt{x^{5}}} d x$
$\int_{1}^{\infty} \frac{1}{x+5} d x$

E] $\int_{-\infty}^{0} \frac{e^{x}}{1+e^{x}} d x$
Sol:

PART 2. PD ARE井2 IMPROPER INTEGRALS

3 Definition of an Improper Integral of Type 2

(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if this limit exists (as a finite number).
(b) If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if this limit exists (as a finite number).
The improper integral $\int_{a}^{b} f(x) d x$ is called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If f has a discontinuity at c, where $a<c<b$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Ex2. Determine if each of the following improper integrals is CONVERGENT or DIVERGENT. If it is convergent, determine what it converges to.
 (A) $\int_{0}^{4} \frac{1}{(x-4)^{2}} d x$
 Sol:

(B) $\int_{0}^{1} \frac{1}{x^{2}} d x$

Sol:
(C) $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$

Sol:

(D) $\int_{0}^{2} \ln (x) d x$

Ex 3. How would you split up the following improper integral in order to evaluate it?
$\int_{-2}^{2} \frac{4}{x^{2}-1} d x$

