

- The limits a and b are finite (1)
- The function $f(x)$ is continuous on $[a, b](2)$

If these conditions are not satisfied we have what is called an IMPROPER INTEGRAL and we will learn how to compute them!

(1) Brash functions:

(2) 20450 NTH functions:

- Degree of numerator $>$ degree of denominator $\lim _{t \rightarrow \infty}\left(\frac{t^{3}+2 t^{2}-4}{t^{2}-8}\right)=\infty$
- Degree of numerator < degree of denominator $\lim _{t \rightarrow \infty}\left(\frac{t^{2}-8}{\left(t^{3}\right)+2 t^{2}-4}\right)=0$
- Degree of numerator $=$ degree of denominator $\lim _{t \rightarrow \infty}\left(\frac{t^{3}+2 t^{2}-4}{\left(4 t^{3}-8\right.}\right)=\frac{1}{4}$

* A sketch of graph helps!
from $\lim _{t \rightarrow 2^{-}}\left(\frac{1}{t-2}\right)=-\infty$
from Risint $\lim _{t \rightarrow 2^{+}}\left(\frac{1}{t-2}\right)=\infty$.

(4) 4 TR

$$
\lim _{t \rightarrow \infty}\left(\frac{2 t}{e^{t}}\right)={\underset{L R}{ }}_{\frac{\infty}{=0}}^{\lim _{t \rightarrow \infty}}\left(\frac{2}{e^{t}}\right)=0
$$

$\lim _{t \rightarrow \infty}\left(t e^{-t}\right)=$ Rewrite $\lim _{t \rightarrow \infty}\left(\frac{t}{e^{t}}\right)=\lim _{t \in}\left(\frac{1}{e^{t}}\right)=0$.

Definition of an Improper Integral of Type 1

(a) If $\int_{a}^{t} f(x) d x$ exists for every number $t \geqslant a$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

provided this limit exists (as a finite number).
(b) If $\int_{t}^{b} f(x) d x$ exists for every number $t \leqslant b$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

provided this limit exists (as a finite number).
The improper integrals $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

In part (c) any real number a can be used

Ex. Determine if each of the following improper integrals is CONVERGENT or DIVERGENT. If it is convergent, determine what it converges to.
(A) $\int_{2}^{\infty} e^{-8 x} d x=\lim _{b \rightarrow \infty} \int_{2}^{b} e^{-8 x} d x$

Sol:

$$
\begin{aligned}
& =\lim _{b \rightarrow \infty}\left[\frac{1}{8}\left(e^{-16}-e^{-86}\right)\right] \\
& =\frac{1}{8}\left(e^{-16}-0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{2}^{b} e^{-8 x} d x \\
& -\left.\frac{1}{8} e^{-8 x}\right|_{2} ^{b} \\
& e^{-\infty=0}=0 \\
& =\left(-\frac{1}{8} e^{-8 b}-\left(\frac{-1}{8} e^{-16}\right)\right) \\
& =\frac{1}{8}\left(e^{-16}-e^{-86}\right)
\end{aligned}
$$

$$
\begin{aligned}
& e^{\infty}=0 \\
& -\infty-\infty
\end{aligned}
$$

(B) $\int_{a}^{\infty} \frac{1}{x^{2}} d x$ for $a>0$
[c] $\int_{a}^{\infty} \frac{1}{x} d x$ for $a>0$
Sol $\lim _{b \rightarrow \infty} \int_{a}^{b} \frac{1}{x^{2}} d x$

$$
=\lim _{b \rightarrow \infty}\left(\frac{-1}{b}+\frac{1}{a}\right)
$$

$$
=0+\frac{1}{a}
$$

$$
=\frac{1}{7} \lim _{b \rightarrow \infty}\left(\ln \left(\frac{b-1}{b+6}\right)\right)-\frac{1}{7} \lim \left(\ln \left(\frac{1}{8}\right)\right)
$$

$$
=-\frac{1}{7} \ln |x+6|+\frac{1}{7} \ln |x-1|
$$

$$
=\frac{1}{7}(\ln |x-1|-\ln |x+6|)
$$

$$
=\frac{1}{7} \ln (\underbrace{\lim _{b \rightarrow \infty}\left(\frac{b-1}{b+6}\right)})-\frac{1}{7} \ln (1 / 8)
$$

$$
=1 \ln \left(\not x 0-1 \ln (1 / 5)=-\frac{1}{2} \ln (1 / 6)\right.
$$

If $f(x)$ is continuous $\lim [f(g(x))]=f(\lim (g(x)))$
(E] $\int_{-\infty}^{0} \frac{e^{x}}{1+e^{x}} d x=\lim _{t \rightarrow-\infty} \underbrace{\int_{t}^{0} \frac{e^{x}}{1+e^{x}} d x}$
Sol:

$$
\begin{aligned}
&=\lim _{t \rightarrow-\infty}\left(\ln (2)-\ln \left(1+e^{t}\right)\right. \\
& \ln (2)-\ln \left(\lim _{t \rightarrow-\infty}\left(1+e^{t}\right)\right) \\
&= \ln (2)-\ln (1)^{\circ} \\
&= \ln (2) \text { Converces. }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{x^{2}}^{0} \frac{e^{x}}{1+e^{x}} d x \quad \begin{array}{l}
w=1+e^{x} \\
d w / d x=e^{x}
\end{array} \\
&=\int_{*}^{*} \frac{e^{x}}{w} \frac{d w}{e^{x}} d x=\frac{d w}{e^{x}} \\
&=\ln |w| \\
&=\left.\ln \left|1+e^{x}\right|\right|_{t} ^{0} \\
&=\ln (2)-\ln \left(1+e^{t}\right) \\
&\left.=\ln (2)-\ln \left(1+e^{t}\right)\right)
\end{aligned}
$$

0 if Bont Boonss ARE Infinite.

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

PART 2. PIVROE IMPROPER IITEGRALS

3 Definition of an Improper Integral of Type 2
(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if this limit exists (as a finite number).
(b) If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if this limit exists (as a finite number).
The improper integral $\int_{a}^{b} f(x) d x$ is called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If f has a discontinuity at c, where $a<c<b$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Ex 2. Determine if each of the following improper integrals is CONVERGENT or DIVERGENT. (4) If it is convergent, determine what it converges to.
(A) $\int_{0}^{4} \frac{1}{(x-4)^{2}} d x$

Sol.: $=\lim _{b \rightarrow 4^{-}} \int_{0}^{b} \frac{1}{(x-4)^{2}} d x$

$$
=\lim _{b \rightarrow 4^{-}}\left[-\left(\frac{1}{b-4}+\frac{1}{4}\right)\right]
$$

$$
\begin{gathered}
\left.=-\lim _{b \rightarrow 4^{-}}\left(\frac{1}{b-4}+\frac{1}{4}\right) \frac{1}{4}\right) \\
=-\left(-\infty+\frac{1}{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
=-\left(-\infty+\frac{1}{4}\right) \quad \text {. } \\
=\infty
\end{gathered}
$$

$$
\begin{aligned}
& \int_{0}^{b} \frac{1}{(x-4)^{2}} \quad \begin{array}{r}
w=x-4 \\
d w=d x
\end{array} \\
& \int_{n}^{n} w^{2} d \omega=\left.\frac{-1}{w}\right|_{x} ^{*} \\
& \left.\frac{1}{x+4}\right|_{0} ^{b}=\left(\frac{-1}{b-4}-\frac{1}{-4}\right)
\end{aligned}
$$

(B) $\int_{0}^{1} \frac{1}{x^{2}} d x=\lim _{t \rightarrow 0^{+}} \underbrace{1} x^{-2} d x$
sol:

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} & \left(-1+\frac{1}{\underline{t}}\right) \\
& -1+\infty \\
& =\infty \text { DIVERGES. }
\end{aligned}
$$

(C) $\int_{0}^{1} \frac{1}{\sqrt{x}} d x=\lim _{t \rightarrow 0^{+}} \int_{t} x^{-1 / 2} d x$ sol:

$$
\begin{gathered}
\lim _{t \rightarrow 0^{+}}(2-2 \sqrt{t}) \\
=2+0 .
\end{gathered}
$$

$=2$ converges.

$$
\begin{aligned}
& \begin{array}{l}
\text { THM: [P-TEST TYPE 2] } \\
\quad \int_{0}^{1} \frac{1}{x^{p}} d x \quad\left\{\begin{array}{l}
\text { CONVERGES } \\
\text { DIVERGES }
\end{array}\right.
\end{array} \\
& \begin{array}{l}
\int_{0}^{1} \frac{1}{\sqrt[3]{x}} d x^{p=1 / 3} \text { CONVERGE } \\
\int_{0}^{1} \frac{4}{\sqrt{x^{5}}} d x=\frac{p / 2}{\text { dIVERGE }} \\
\int_{0}^{1} \frac{1}{x} d x=1
\end{array} \\
& \begin{array}{c|}
\int_{t}^{2} \ln (x) d x \\
\begin{array}{l}
u=\ln (x) \\
d u=\frac{d x}{x} \\
d r \\
\ln (x)-\int x \frac{d x}{x} \\
d r=x \\
v=x
\end{array} \\
\ln (x)-\int 1 d x \\
x \ln (x)-\left.x\right|_{t} ^{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =0-\lim _{t \rightarrow 0^{+}}(t \ln (t))+2 \ln (2)-2 \\
& \begin{array}{c}
\int_{t}^{2} \ln (x) d x \\
t \\
x \ln (x)-\int x \frac{d x}{x} \begin{array}{c}
a \ln (x) \\
d u=\frac{d x}{x} \\
d v=d x \\
v=x
\end{array} \\
=x \ln (x)-\int 1 d x \\
=x \ln (x)-\left.x\right|_{t} ^{2}
\end{array} \\
& =(2 \ln (2)-2)-(t \ln (t)-t)) \\
& \text { Rewrite }=0-\lim _{t \rightarrow 0^{+}}\left(\frac{\ln (t)}{\frac{1}{t}}\right)+2 \ln (2)-2 \\
& t=\ln (t)+2 \ln (2)-2
\end{aligned}
$$

$$
\begin{gathered}
\qquad L R . \\
=-\lim _{t \rightarrow 0^{+}}\left(\frac{1 / t}{-1 / t^{2}}\right)+2 \ln (2)-2 \\
=-\lim _{t \rightarrow 0^{+}}(-t)+2 \ln (2)-2 \\
=0+2 \ln (2)-2
\end{gathered}
$$

converces.

Ex 3. How would you split up the following improper integral in order to evaluate it?

Sol:

$$
\begin{aligned}
& =\int_{-2}^{-1} f(x) d x+\underbrace{1}_{-1} f(x) d x+\int_{1}^{2} f(x) d x \\
& \int_{-2}^{-1} f(x) d x+\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{1} f(x) d x .
\end{aligned}
$$

