

METHOD #1: [LEFT-HAND SUM] "L"

METHOD # 5: [SIMPSON'S RULE] "S"

PART 2: OVER OF UNDER?

Rule	Overestimate of $\int_{a}^{b} f(x) dx$ when	Underestimate of $\int_a^b f(x) dx$ when
LEFT		
Ln		
DIGUE		
RIGHT		
Rn		
TRAP		
Tn		
MID		
Mn		

PART 3: ERROR IN
APPROXIMATIONS of
$$\int_{a}^{b} f(x) dx$$

 $E_{T} = \int_{a}^{b} f(x) dx - T_{n}$
 $E_{M} = \int_{a}^{b} f(x) dx - M_{n}$
 $E_{S} = \int_{a}^{b} f(x) dx - S_{n}$

THM: [ERROR BOUND for SIMPSon'S RULE] Suppose $|f^{(n)}(x)| \le K$ for $a \le x \le b$. If E_s is the error involved in using SIMPSON'S RULE, then:

Ex I. Given the graph of f(x), let $I = \int_{a}^{b} f(x) dx$ and find the following approximations of I. Also label each as an over or under estimate:

A L3

BR3

 CM_3

List I, R_3 , L_3 , M_3 , T_3 in order from least to greatest:

Ex6. How large should "n" be to guarantee that the SIMPSON'S RULE approximation of $\int_{1}^{1} 4e^{x^2} dx$ is accurate to within 0.0001?