
 INTEGRATION

- The DEFINITE INTEGRAL
$\int_{d}^{b} f(x) d x$ represents the signed area between the graph of the function $f(x)$ and the x-axis (positive area above x-axis and negative below). Oftentimes, our integration methods DO NOT WORK, so we need to resort to APPROXIMATION TECHNIQUES.

PART 1: THE 5 METHODS:

* We want to APPROXIMATE the blue area!

Number of inter vals: $\boldsymbol{n} \quad$ Width of each interval: $\Delta x=\frac{b-a}{n}$

METHOD\#1:[LETT-HAND SUM] " $L_{n}{ }^{\prime \prime}$

MEHOO\#2:[TITHTT-HAND SUM] " R_{n} "

Mehtoin \#3:[VIDPOAT RULE] "Mn"

Mentoin 4:[TRAPEzacal RuLE] "Tn"

METHOD\# 5 : [SIMPSN'S RUEE " S_{n} "

PART 2: OV鳥界 OR UNDER?

Rule	Overestimate of $\int_{a}^{b} f(x) d x$ when...	Underestimate of $\int_{a}^{b} f(x) d x$ when...
LEFT $L_{\boldsymbol{n}}$		
RIGHT		
$\boldsymbol{R}_{\boldsymbol{n}}$		
TRAP $T_{\boldsymbol{n}}$		
$M_{\boldsymbol{n}}$		

$$
E_{T}=\int_{a}^{b} f(x) d x-T_{n}
$$

$$
E_{s}=\int_{a}^{b} f(x) d x-S_{n}
$$

THM: [ERROR BOUND for TRAP and MID]
Suppose $\left|f^{\prime \prime}(x)\right| \leqslant K$ for $a \leqslant x \leqslant b$. If E_{T} and E_{M} are the errors in the TRAPEZOIDAL RULE and MIDPOINT RULE, then:

THML: [ERROR BOUND fOR SIMPSON'S RULE]
Suppose $\left|f^{(4)}(x)\right| \leqslant K$ for $a \leqslant x \leqslant b$. If E_{s} is the error involved in using SIMPSON'S RULE, then:

NOTE:
ロ
\square

■
\square

PART 4 : 臣

Ex l. Given the graph of $f(x)$, let $I=\int_{f}^{b} f(x) d x$ and find the following approximations of I. Also label each as an over or ünder estimate:

囚 1

BR

C M_{3}
ΔT_{3}

List $I_{,} R_{3}, L_{3}, M_{3}, T_{3}$ in order from least to greatest:

Ex 2: Use the TRAPEZOIDAL RULE, SIMPSON'S RULE, and MIDPOINT RULE with $n=4$ to approximate the area under the graph shown below:

sol:

Ex 3. Estimate the value of the definite integral $\int_{1}^{2} 1 / x d x \quad u \operatorname{sing} n=5$ and the
因 L 4
回R4
C_{C}

DI T_{4}

ES S_{4}

Ex 4. For each $f(x)$ drawn below, list $\int_{1}^{9} f(x) d x, T_{8}, M_{8}, R_{8}, L_{8} \quad$ in order from
smallest to largest.

Ex 5. How large should we take " n " in order to guarantee that the TRAPEZOIDAL RULE and MIDPOINT RULE approximations for $\int_{1}^{2} 1 / x d x$ are accurate to within 0.0001 ?
sol:

Ex6. How, large should " n " be to guarantee that the SIMPSON'S RULE approximation of $\int_{0} 4 e^{x^{2}} d x \quad$ is accurate to within $0.0001 ?$

