

We will now learn a method to treat more complicated integrals for which normal substitution will not work immediately (always check!). This method involves using TRIGONOMETRY to make a creative substitution within an integral.

- Given an integral of a particular form, we will use one of the TRIANGLES (I, II, III) along with SOHCAHTOA to CONVERT everything in the integral from " x " to " θ ". One we do this, the integral will be computable. We then go back to " x " at the end! The is called the METHOD OF TRIGONOMETRIC SUBSTITUTION.

PEEIENW of INVERSE TRIG. arcsin
arctan

PIRT 1. INTEGRALS CONTADNING " $a 2+x^{2}$ "

ExI. $\int_{0}^{2} \frac{1}{\left(x^{2}+4\right)^{3 / 2}} d x$
Sol:

Ex2. $\int \frac{d x}{x^{2} \sqrt{x^{2}+25}}$

A Note Abour Donning:

PART 2. INTEGRALS CONTADIUNG " $\sqrt{a^{2}-x^{2}}$ "
(A.k.A.

S5. ${ }^{2}$ SUBSTITITION)
Ex3. $\int \frac{1}{\sqrt{4-x^{2}}} d x$ sol:

Ex4. $\int_{0}^{4} \frac{x^{2}}{\sqrt{16-x^{2}}} d x$

A Note Abour Don Miny

PART3. INTEGRALS CONTADNING " $\sqrt{x^{2}-a^{2}} "$
(A.k.A. ST ${ }^{5}$ d

Ex5. $\int \frac{1}{x^{2} \sqrt{x^{2}-64}} d x$
Sol:

ANOTE ABOUT DONDFIN:

Ex 6. $\int \frac{x}{\sqrt{9-x^{2}}} d x$
Sol:

