Ch 6.4
AN APPLICATLON of INTEGRRTION
Part 1: THE RASTA DS of work.
A CONSTANT FORCE:

DEEN 2: [GRAUTIRTIONNAL FORCE]

Ex 1: Calculate the WORK done in the following situations:
A A force of 2 Newtons moves a 5 kg box 12 meters.
(B) A 2 kg book falls to the ground from a height of 2 meters.

QLUESTION: WHAT If force is Not CONSTANT?
ANSWER: WE NEED CALCuLUS! (INtEGRALS).

DEF 3 : [HOOKE'S LAW].

Ex |A force of 8 lbs is required to hold a spring stretched 2 inches from its natural length. How much work is done in stretching its natural length to 4 inches beyond its natural length.
sol.

Ex2. Suppose that 4 J or work is needed to stretch a spring from its natural length of 10 cm to a length of 12 cm .
A. How much work is needed to stretch the spring from 12 cm to 15 cm ? Sol:
B. How far beyond its natural length will a force of 20 Newtons keep the spring stretched. Sol:

Ex 3 . A cable with density $2 \mathrm{lb} / \mathrm{ft}$ is used to lift 100 lb bundle of shingles from the base of a building to - the roof. Treating the shingles as a concentrated point mass, determine the work needed to hoist the shingles up to the roof that is 20 feet tall.

A
What is the weight of a slice of the cable with length Δy ?
[B] Compute the work done to lift the cable by itself to the roof? sol:
C. Compute the work done in lifting the shingles to the top of the roof, and add this to the answer from part B.

Ex 4: A tank if full of water. Set up an integral that represents the work required to pump the water to a height of 2 meters above the top of the tank. The tank is shaped as pictured.

