Ch 6.4
AN APPIICATLON of INTEGRATLON
PART 1: THE PASNOCS of work.
A CONSTANT FORCE:

DDEFN 1: [Work by constant Force]

$$
W=F \cdot d
$$

[DEFN 2: [GRAVITRTIONAL FORCE] L~ ON EARH

$$
F_{g}=m \cdot g \quad g=\begin{gathered}
\text { Acceles } \\
\text { dieter } \\
\text { gravity }
\end{gathered}
$$

$$
\begin{aligned}
1 \mathrm{ft} & =0.305 \mathrm{~m} \\
1 \mathrm{ft}-1 \mathrm{~b} & =1.36 \mathrm{~J} \\
11 \mathrm{~b} & =4.45 \mathrm{~N}
\end{aligned}
$$

$g=9.81 \mathrm{~m} / \mathrm{s}^{2} \mathrm{SI}$ $g=32 \mathrm{ft} / \mathrm{s}^{2}$ ENGlish.

Ex 1: Calculate the WORK done in the following situations:
A A force of 2 Newtons moves a 5 kg box 12 meters.

(B) A 2 kg book falls to the ground from a height of 2 meters.

$$
2 m\left[\begin{array}{l}
2 \mathrm{Fg} \\
\mathrm{Fg}_{\mathrm{g}}
\end{array} \quad W=\mathrm{F}_{\mathrm{G}} d=m g d=4 g \mathrm{~J}\right.
$$

QuESTION: WIHAT If force is Nor CONSTANT?
ANSWER: WE NEED CALCuLUS! (INTEGRALS).

Part 2 : the 5 PSOMS Problem
DEFN 3: [HOOKE'S LAW].
Force to maintain A spring @ A durance of " x " from Relaxes STMTE

Ex |A force of 8 lbs is required to hold a spring stretched 2 inches from its natural length.

- (How much work is done in stretching its matorallengtt to 4 inches beyond its natural length.

Sol. Mokes ${ }^{\text {n }}$ nw (fond k)

$$
\begin{gathered}
F=K x \\
816=K \cdot\left(\frac{1}{\mathrm{~L} f t}\right. \\
k=482^{16}
\end{gathered}
$$

$$
\begin{aligned}
w=\int_{x=a}^{x=b} \frac{F(x) d x}{}=\int_{\text {Hooke. }}^{\frac{1 / 3}{4} \frac{48 x}{\gamma} d x} & =\left.24 x^{2}\right|_{0} ^{\frac{1}{3}} \\
& =24 \frac{1}{9} f-165
\end{aligned}
$$

Ex 2 Suppose that 4 J or work is needed to stretch a spring from its natural length of 10 cm to a length of 12 cm .
b

Stand

$$
\left[W=4 J=\int_{0}^{0.02} k x d x=\left.\frac{k x^{2}}{2}\right|_{0} ^{0.02}=\frac{k(0.02)^{2}}{2}=4 J \quad k=20000 \frac{N}{m}\right.
$$

(B) How tar bevondits natural 9 eng th will a force of 20 Newtons seep the spring stretethed.

Sol:
Hooke's Law

$$
\begin{array}{rl}
F=k x & =20000 x \\
20 \mathrm{~N} & x \\
x & =\frac{20}{20000}=\frac{1}{1000} m=x
\end{array}
$$

Part 3: The

* WE can apply Similar TECHNLIVES TO ANOTHER APPLICATION!

ENGLISH.
Ex 3 . A cable with density $2 \mathrm{lb} / f \mathrm{ft}$ is used to lift 100 lb bundle of shingles from the base of a building to - the roof. Treating the shingles as a concentrated point mass, determine the work needed to hoist the shingles up to the roof that is 20 feet tall.
A) What is the weight of a slice of the cable with length Δy ? * Trent shingles + carle separate.

SOT:

$$
\begin{aligned}
& \rightarrow \delta=2 \mathrm{lb} / f_{t}=\frac{\text { WEIGhT }}{\text { LENGtH. }} \\
& \text { lEGIT }=\delta \text {. LENGTH. } \\
& \begin{array}{l}
\text { weight } \\
\text { of spice }
\end{array}
\end{aligned}
$$

Sol: Work for

$$
\begin{aligned}
& \text { THE SIC } \begin{aligned}
& =\binom{\text { weight }}{\text { q ore }} \cdot \text { DITIANCE }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& W=\int_{0}^{\text {ToTAL WORK }}
\end{aligned}
$$

Compute the work done in lifting the shingles to the top of the roof, and add this to the answer from part B.
Sol:

$$
\begin{aligned}
& w=F \cdot d=w_{\text {light }} \cdot d \\
& =100 \mathrm{lbs} \cdot 20 \mathrm{ft}=2000 \mathrm{ft}^{2}-1 \mathrm{l} 5 \\
& \underset{\text { Work }}{\text { Total }}=400+2000=2400 \mathrm{ft} \text {-lbs }
\end{aligned}
$$

$A(y)=$ Crass sectional Area of slice.
$D(y)=$ Distance to pump Slice.
$\delta=$ fluid density

WEiGht $=\delta \cdot \mathrm{VOL}$

$$
W_{\text {site }}=F d
$$

$$
=\text { weight } \cdot d
$$

$$
=\delta \cdot \gamma_{\text {Splice }} \cdot d
$$

$$
=\delta \cdot A(y) d \Delta y
$$

$$
=\delta A(y) \Delta(y) \Delta y
$$

Step 2

$$
W=\int_{0}^{D} \delta D(y) A(y) d y
$$

$$
\begin{aligned}
& =\delta \cdot g \cdot d \cdot \text { Vp. } \\
& \begin{array}{l}
=\delta g d \cdot A l y) \Delta y \\
=\delta g D(y) A(y) \Delta y
\end{array} \\
& \begin{array}{l}
=\delta g d \cdot A l y) \Delta y \\
=\delta g D(y) A(y) \Delta y
\end{array} \\
& \text { "Wopix for } W_{\text {Slice }}=F \cdot d \\
& =\text { weight } \cdot d \\
& =\mathrm{MaS}_{\text {lice }} \cdot g \cdot d
\end{aligned}
$$

