
(6.) 7 : We are going to learn about an important application of power series. Using what we know about geometric series, we can represent certain functions (on particular intervals) as power series!

** Replace r with the variable x and let $a=1$ and we get the following:

$$
\left.\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x} \quad \text { PRovided } \quad|x|<1 \quad \text { (i.e } x \in(-1,1)\right)
$$

$$
\text { REPRESENIFIION of } f(x)=\frac{1}{1-x}
$$

** We can use this to find POWER SERIES REPRESENTATIONS and corresponding inter val of convergence for other functions that have a "similar" form.
Ex l. Find the POWER SERIES REPRESENTATION of each of the following functions and indicate the inter val of convergence.
(A) $f(x)=\frac{1}{1-2 x}$

Sol:
(B) $f(x)=\frac{1}{1+x^{2}}$

Sol:
(C) $f(x)=\frac{4}{x+5}$
sol:
(D) $f(x)=\frac{6}{x^{2}-2 x-8}$ HINT: PARTIAL FRACTIONS. Sol:

国 $f(x)=\frac{x}{1-x^{5}}$
Sol:

Part 2: CRISUUCUSS w/ POWER SERIES
$\left.\begin{array}{rl}\text { RECALL: } & \frac{d}{d x}\left[f_{1}(x) \pm f_{2}(x)\right]=\frac{d}{d x}\left[f_{1}(x)\right] \pm \frac{d}{d x}\left[f_{2}(x)\right] \\ \int\left[f_{1}(x) \pm f_{2}(x)\right] d x & =\int f_{1}(x) d x \pm \int f_{2}(x) d x\end{array}\right\} \begin{aligned} & \text { TERM-By-TERM } \\ & \text { DIFFERENTIIINN/ } \\ & \text { INTEGRAILON. }\end{aligned}$

* This property of derivatives and Integrals still holds for an infinite sum!

ThM: [DERIVAIIVES/INTEGRALS of POWER SERLES]
If the power series $\sum_{n=0}^{\infty} C_{n}(x-a)^{n}$ has radius of convergence $R>0$, then the function:
is differentiable (and hence continuous) on the interval ($a-R, a+R$) and:

- The DERIVATIVE is
- The INTEGRAL is

Ex 2: Consider the function $f(x)=\frac{1}{(1-x)^{2}}$
(A) Use differentiation to find a POWER SERIES REPRESENTATION for $f(x)$.

What is the radius of convergence of this new power series? sol:
(B) Use part [A] to find a POWER SERIES REPRESENTATION for $f(x)=\frac{1}{(1-x)^{3}}$ sol:
(C] Use part $[B]$ to find a POWER SERIES REPRESENTATION for $f(x)=\frac{x}{(1-x)^{3}}$
What is the new radius of convergence? sol:

Ex 3. Evaluate the integral as a power series and indicate the radius of convergence.

$$
\int \frac{x}{1-x^{5}} d x
$$

