CH $11.8:$ PORTE

THE

What numbers can we input into this series to have the result be a CONVERGENT series?

* Typically, the green box is replaced by a variable " x " and we create what is called a POWER SERIES.

DEAN: [POWER SERIES]

A POWER SERIES centered at "a" is a series with the form:

$$
\sum_{n=0}^{\infty} C_{n}(x-a)^{n}=C_{0}+C_{1}(x-a)^{1}+C_{2}(x-a)^{2}+C_{3}(x-a)^{3}+\ldots
$$

Where " x " is a variable and the C_{n}^{s} are constants that we refer to as the coefficients of the series.

NOTE:

Determine the values of " x " for which

Ex l. Find all values of x for which the following power series converges:

Ex2. Find the RADIUS of CONVERGENCE and INTERVAL of CONVERGENCE for each of the following power series:
(因 $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
sol:

(C) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot(x-1)^{n}}{n}$
sol:

```
(D) \(\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{3^{n} \cdot n^{2}}\)
Sol:
```

Ex 3. (i) Find the RADIUS of CONVERGENCE and INTERVAL of CONVERGENCE for each of the following power series:

(ii) Knowing what we know from part (i), what can we tell about the following series: Sol: $\quad \sum_{n=1}^{\infty} \frac{2^{n+1}}{\sqrt{n}} \cdot x^{2 n}$

Ex 4. Suppose that the RADIUS of CONVERGENCE of the power series $\sum_{n=0}^{\infty} C_{n} X^{n}$ is R. What is
Sol:

Ex 5: Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-2$ and diverges when $x=4$. What can be said about the CONVERGENCE/DIVERGENCE of the following series?
Sol:

