## CH $11.8:$ BOWTR St ers

THE


What numbers can we input into this h series to have the result be a CONVERGENT series?

$$
\begin{array}{lll}
\sum_{n=0}^{\infty} \frac{(\square-1)^{n}}{2^{n}} & x=1 & \sum_{n=0}^{\infty} 0 \text { converges }
\end{array}
$$

$$
x=3 \quad \sum \frac{2^{n}}{2^{n}}=\sum 1 \quad \text { DIv. }
$$

$$
x=-2 \quad \sum \frac{(-3)^{n}}{2^{n}}=\sum\left(\frac{-3}{2}\right)^{n}
$$



* Typically, the green box is replaced by a variable "x" and we create what is called a POWER SERIES.

$$
\sum \frac{(x-1)^{n}}{2^{n}}=\sum\left(\frac{1}{2^{n}}\right)(x-1)^{n} a=1
$$

## DEFT: [POWER SERIES]

A POWER SERIES centered at "a" is a series with the form:

$$
\sum_{n=0}^{\infty} C_{n}(x-a)^{n}=C_{0}+C_{1}(x-a)^{1}+C_{2}(x-a)^{2}+C_{3}(x-a)^{3}+\ldots
$$

Where " $x$ " is a variable and the $C_{n}^{\prime s}$ are constants that we refer to as the coefficients of the series.

NOLE: (1) The $C_{n}^{\prime s}$ are functions of " $n$ " so for each value of $n$, they become a constant. We call - them constants because they are constant with respect to the variable x. Today we will consider $\boldsymbol{C}_{n}^{\boldsymbol{s}}$ that have the form:

$$
\frac{1}{2^{n}}, \frac{1}{n!}, n!, \frac{(-1)^{n}}{n+1}, \frac{2^{n+1}}{\sqrt{n}}, \text { etc }
$$

(2)A power series can be thoughtof as a POLYNOMIAL of INFINITE DEGREE. For example:

$$
\text { Power sexes }=\sum_{n=1}^{\infty} \frac{x^{n}}{n}=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots
$$

(3) Each different value of $x$ yields a different series. For some values of $x$ this series may converge and for others it may diverge... That's where we come in!


Ex l. Find all values of $x$ for which the following power series converges:
sol: $\quad \sum_{n=0}^{\infty} \frac{(x-1)^{n}}{2^{n}} \quad a=1$
Sol: $\sum_{n=0}^{\infty}\left(\frac{x-1}{2}\right)^{n}$ GEO senses. $r=\frac{x-1}{2}$

$$
\begin{gathered}
\text { COMNERGES if }|r|<1 \quad\left|\frac{x-1}{2}\right|<1 \\
\frac{|x-1|}{2}<1 \\
|x-1|<2 \\
-2<x-1<2 \\
-1<x<3
\end{gathered} \begin{aligned}
& \text { series converges fee } \\
& -1<x<3
\end{aligned} \quad(-1,3)
$$


$R=$ "Radius of CONNERGENCE" (R.O.C)

$$
\text { I.O.C }=(-1,3)
$$

R.O.C $=2$


THM: [THE RRIIO TEST]


Ex 2. Find the RADIUS of CONVERGENCE and INTERVAL of CONVERGENCE for each of the following power series:
[A] $\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad a_{n}=\frac{x^{n}}{n!} \quad\left|a_{n}\right|=\frac{\left|x^{n}\right|}{n!}=\frac{|x|^{n}}{n!} \quad\left|a_{n+1}\right|=\frac{|x|^{n+1}}{(n+1)!}$
Sol: RATINOTEST

$$
\begin{aligned}
& \left.x_{x \neq 0}^{x \neq 0} \lim _{n \rightarrow \infty}\left(\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}\right)=\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)^{n} \cdot} \cdot \frac{n!}{\left(|x|^{n}\right.}\right)=\lim _{n \rightarrow \infty}\left(|x| \cdot \frac{n!}{(n+1|\cdot n|}\right) \\
& \begin{aligned}
=\lim _{n \rightarrow \infty}\left(|x| \cdot \frac{1}{n+1}\right) & \left.=|x| \cdot \lim _{n \rightarrow \infty}\left(\frac{1}{n+1}\right)=0=L \quad \begin{array}{l}
\text { R.O.C }=\infty \\
L \cdot O \cdot C=(-\infty, \\
(\text { Regardless of } \\
x
\end{array}\right) \text { so CONVERGES for Au } x .
\end{aligned} \\
& \begin{array}{l}
\left.\quad \begin{array}{l}
n+1 \\
\quad<1 \quad \text { Regardless of } \\
x
\end{array}\right) \text { so converges for Au } \\
a_{n}=0=n!x^{n} \quad\left|a_{n}\right|=n!|x|^{n} \quad\left|a_{n+1}\right|=(n+1)!|x|^{n+1}
\end{array} \\
& \text { (B) } \sum_{n=1}^{\infty} n!x^{n} \\
& a=0 \\
& \text { Sol: }(x+0) \lim _{n \rightarrow \infty}\left(\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}\right)=\lim _{n \rightarrow \infty}\left(\frac{(n+1) \mid\left(\left.x\right|^{n+1}\right.}{(n!)|x|^{n}}\right)=|x| \lim _{n \rightarrow \infty}((n+1))=\infty=L
\end{aligned}
$$

$L>1$ (REGgRelesr) So DIVERGGS for Au $x$
of $x$

$$
\text { ROC }=0 \text { I.O.C }=\{0\}
$$

$$
\text { [C] } \sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot(x-1)^{n}}{n} \quad a=1 \quad a_{n}=\frac{(-1)^{n}(x-1)^{n}}{n} \quad\left|a_{n}\right|=\frac{|x-1|^{n}}{n} \quad\left|a_{n+1}\right|=\frac{|x-1|^{n+1}}{n+1}
$$

sol:

$$
\begin{aligned}
x \neq 1 \lim _{n \rightarrow \infty}\left(\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}\right) & =\lim _{n \rightarrow \infty}\left(\frac{|x-1|^{n+1}}{n+1} \cdot \frac{n}{|x-1|^{n}}\right)=|x-1| \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right) \\
& =(x-1 \mid \cdot 1=L
\end{aligned}
$$

CONVERGE if $L<1$. i.e of $|x-1|<1 \quad \begin{aligned} & R=1 \\ & R=1\end{aligned}$


$$
\text { (D) } \sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{3^{n} \cdot n^{2}} \quad a=-2 \quad\left|a_{n}\right|=\frac{|x+2|^{n}}{3^{n} \cdot n^{2}} \quad\left|a_{n+1}\right|=\frac{|x+2|^{n+1}}{3^{n+1} \cdot(n+1)^{2}}
$$

Sol:

$$
\begin{array}{r}
\frac{\text { Sol: }}{x \neq-2} \lim _{n \rightarrow \infty}\left(\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}\right)=\lim _{n \rightarrow \infty}\left(\frac{|x+2|^{n+1}}{3^{n+1}(n+1)^{2}} \cdot \frac{\left(3^{n} n^{2}\right.}{|x+2| n}\right) \\
\quad=\frac{|x+2|}{3} \lim _{n \rightarrow \infty}\left(\frac{n^{2}}{(n+1)^{2}}\right)=\frac{|x+2|}{3}=L
\end{array}
$$

Converges of $\frac{|x+2|}{3}<1$ so $|x+2|<$ (3)
CHECK EnActs

$$
x=-5
$$

$$
\text { I.OC }=[-1,1] \text { I.O.C }=a-R, a+R
$$

Ex 3. (i) Find the RADIOS of CONVERGENCE and INTERVAL Of CONVERGENCE for each of the following power series:
sol:

$$
\sum_{n=1}^{\infty} \frac{2^{n+1}}{\sqrt{n}} \cdot x^{n}
$$

(ii) Knowing what we know from part (i), what can we tell about the following series:

Sol:

$$
\sum_{n=1}^{\infty} \frac{2^{n+1}}{\sqrt{n}} \cdot x^{2 n}
$$

Ex 4. Sol:

Suppose that the RADIUS of CONVERGENCE of the power series $\sum_{n=0}^{\infty} C_{n} X^{n}$ is $R$. What is
the radius of convergence of the power series $\infty$ the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} X^{3 n}$
$\sum C_{n} x^{n}$ CONVERGES for $-R<x<R$

$$
a-R<x<a+R
$$

$$
\text { so } \sum C_{n} x^{3 n}=\sum C_{n}\left(x^{3}\right)^{n} \quad \text { CONVERGES } \quad \begin{aligned}
-R & <x^{3}<R \\
\sqrt[3]{-R}<x & <\frac{\sqrt[3]{R}}{\overline{R \cdot O} \cdot C}
\end{aligned}
$$

Ex 5: Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n} \sim$ converges when $x=-2$ and diverges when $x=4$. What can be said about the "OUNVERGENCE/DIVERGENCE of the following series?
Sol:
(A) $\sum \operatorname{Cn}(-1)^{n} \operatorname{Conv}$. * UnNowown * converge * diverge
(B)

c] $\sum C_{n} \cdot(2)^{n} \mathrm{VNK}$
(1) $\sum C_{n}(1)^{n}$ Cons.

