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¥ Typically, the green box is replaced by a variable "x" g(ﬁd ale create what is
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A POWEK SERIES centered at "a" is a series with the form:
Z‘,CnOc-a)" Co+ €, (%03 + Ca(x-a3"+ Cy (-0 % ...

Where x" is a variable and the Cn are constants that we refer to as the coefficients
of the series.
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NME:(‘(\IM Cns are functions of "n" so for each valuve of n, they become a constant. We call
hem constants because they are constant with respect to the variable x. Today
we will consider G* that have the form:
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(2 A power series can be thoughtof as a POLYNOMIAL of INFINITE PEGREE. For

example: 2 Chz’4 a.=0.
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(_33Each different value of x yields a different series. For some values of x this
series may converge and for others it may diverge... That's where we come in!

%3 Vetermine the values of "x" for which f}cna-a)“ will converge.
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& | Find all values of x for which ’rhe following power series converges:
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There are three different possibilities for a given power series: Z‘,Cn (x_@n
n=0

e The series converges for all values of x. In this case:

RADIUS of CONVERGENCE INTERVAL OF CONVERGENCE —
Ro.C= o0 _| To.C = (Foo,00)
e The series converges only when x=a. In this case:
Y RADIUS of CONVERGENCE INTERVAL OF CONVERGENCE —
; RoC=0 | To.C = fa3
@- e There exists some value R>0 (called the radius of convergence) such that
- the series converges for |X-a.|<R. In this case:
R %0 <R
RADIVUS of GONVEKGENCE ~2 < xefta [ INTERVAL OF CONVERGENCE —
R.0o.C = _r or (0~ R,L+R)or
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B 2. Find the RADIUS of CONVERGENCE and INTERVAL of CONVERGENCE for each of the
—  following power series: /g
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EX3 (l) Find the KAVI 0 CONVEKGENCE and INTERVAL Of CONVERGENCGE for each of

the following power series: 2"" a
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(i) Knowing what we know from part (i), what can we tell about the following series:
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Y Suppose that the RAPIUS of CONVERGENCE of the power series Z,' CaX is R. What is
.5_‘ - the radius of convergence of the power series i'oC Xg.\ n=o ’Lv 6.=0
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Ex5: Suppose that Cn"- converges when x=-2 and diverges when x=4. What can be

= said about the CONVERGENCE/PIVERGENCE of the following series?
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