

NOTE: So far, the tests for convergence that we have learned have only applied to series with positive terms. In this section, we will consider series that have terms which are not always positive. Particularly, we will look at ALTERNATING SERIES where terms alternate being positive/negative.

Part 1: The General 50 3 NM of An Alternating Series

Ex. Write out the first 5 terms of the following ALTERNATING SERIES:
(B) $\sum_{n=1}^{\infty}(-1)^{n-1} \cdot 2^{n}$

Sol:

The convergence of an alternating series will depend only on
** To determine if an alternating series CONVERGES, we can apply the ALTERNATING SERIES TEST

TIM: [ALTERNATING SERIES TEST]:

If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n} \cdot b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+b_{7}-\ldots \quad \text { w/ } b_{n}>0
$$

Satisfies both:
(i) $\lim _{n \rightarrow \infty} b_{n}=0$
AND
(ii) $b_{n+1} \leqslant b_{n}$ for All n

Then the series is CONVERGENT. Otherwise, the test is INCONCLUSIVE

The DIVERGENCE TEST still applies to alternating series. So if the terms of the series DO NOT tend toward zero, then the series DIVERGES

Ex 2: Determine if the following series CONVERGE or DIVERGE. You must provide proper justification.

B $\sum_{n=1}^{\infty}\left(-\frac{1}{1)^{n} \cdot n}\right.$
Sol:

CC $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^{3}+1}$ Sol:

(D) $\sum_{n=1}^{\infty}(-1)^{n} e^{2 / n}$

E $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{\sqrt[n]{n^{3}+1}}$

PART 2: ESTAGTATENG

 of AITERNFTING SERTES.

NOTE: As we have seen, a partial sum of any convergent series can be used to estimate the sum of the series. When using an approximation, we always have error and an associated REMAINDER. For alternating series, we can find a BOUND for the size of the remainder when an nth partial sum is used.

ThM: [Alternhting sertes Estimation]
Suppose $\sum_{n=1}^{\infty}(-1)^{n} \cdot b_{n}$ is a convergent alternating series (i.e. satisfies conditions of A.S.T.) with $b_{n}>0$, then the following holds:

$$
\text { Sum }=S=\sum_{n=1}^{\infty}(-1)^{n} \cdot b_{n} \quad\left|R_{n}\right|=\left|S-S_{n}\right| \leqslant b_{n+1}^{q_{n^{\text {th }}} \text { partal sum. }}
$$

Ex3. How many terms do we need to add in order to approximate the SUM of the following convergent series with an error less than 0.0001 ? Then find this approximation.

$$
\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{1}{n}
$$

Ex 4. Let S_{n} be the nth partial sum of the convergent series $S=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3 n+1}$.

- Give a bound on the error $\left|s-S_{100}\right|$ as a decimal rounded to three decimal places.
- Use the bound on the remainder to find an n such that $\left|S-S_{n}\right| \leqslant 0.001$

