
NOTE: So far, the tests for convergence that we have learned have only applied to series with positive terms. In this section, we will consider series that have terms which are not always positive. Particularly, we will look at ALTERNATING SERIES where terms alternate being positive/negative.
PART 1: THE GENERAL 5OPN of AN ALTERNATING SERIES * $(-1)^{n}$ or $(-1)^{n+1}$
Ex. Write out the first 5 terms of the following ALTERNATING SERIES:
(A) $\sum_{n=1}^{\infty} \frac{\left.(-1)^{n} \cdot \frac{1}{n}\right)}{a_{n}}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\cdots$ (B) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot 2^{n}}{a_{n}}=2-4+8-16+32-\ldots$

Sol:
Sol:

$$
b_{n}=1 / n
$$

DEF N: [ALTERNATING SERIES]
a series w/ Terms that Alternate.

$$
\sum \frac{(-1)^{n} \cdot b_{n} \text { or } \sum_{\text {(OR similar). }}^{(-1)^{n+1} b_{n}} a_{n}}{a_{n}}
$$

$w / b_{n} \geqslant 0$.

** To determine if an alternating series CONVERGES, we can apply the ALTERNATING SERIES TEST

TIM: [ALTERNATING SERIES TEST]: A.S.T.

If the alternating series

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n+} \cdot b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+b_{7}-\ldots \tag{n}
\end{equation*}
$$

Satisfies both:

$$
\text { (i) } \lim _{n \rightarrow \infty} b_{n}=0
$$

AND
(ii) $b_{n+1} \leqslant b_{n}$ for Au l n

Then the series is CONVERGENT. Otherwise, the test is INCONCLUSIVE

The DIVERGENCE TEST still applies to alternating series. So if the terms of the series 80 NOT fend toward zero, then the series DIVERGES
if (i) fails Titer Series DIVERGES by Div. TEST.
Ex 2: Determine if the following series CONVERGE or DIVERGE. You must provide proper justification.
(A) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ (ALTERNATING HARMONIC)

Sol: A.S.T. $b_{n}=\frac{1}{n}$
(i) $\lim _{n \rightarrow \infty} b_{n}=0$

CHECK Hypotheses
(ii) check $b_{n+1} \leqslant b_{n}$ for au n

$$
\frac{1}{n+1} \leq \frac{1}{n}
$$

So by A.S.T $\sum \frac{(-1)^{n}}{n}$ CONVERGES

Why does the harmonic series DIVERGE and the alternating harmonic series CONVERGE?

$$
\begin{aligned}
& \sum \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \\
& \sum \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots \text { PREYENNE Of NEGPTINES } \\
& \text { "TAMES" GROwTH!. }
\end{aligned}
$$

(B] $\sum_{n=1}^{\infty}\left(\frac{(-1)^{n} \cdot n}{4 n+3}\right)^{a_{n}} A \cdot S \cdot T$
Sol: $b_{n}=\frac{n}{4 n+3} \quad$ chsek Hyport $<$ (i) $\lim _{n \rightarrow \infty}\left(\frac{n}{4 n+3}\right)=\frac{1}{4} \neq 0$.
A.S.T inconclusive.

By Diverbence test $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{4 n+3}$ DiverGes $\lim _{n \rightarrow \infty}(\underbrace{\left(\frac{-1)^{n} \cdot n}{4 n+3}\right.}_{a_{n}}) \neq 0$.
(C) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^{3}+1} \quad$ A.S.T.

Sol:

$$
b_{n}=\frac{n}{n^{3}+1}
$$

CHeck Hypont
(i) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left(\frac{n}{n^{3}+}\right)=0^{\Omega}$
(ii) cueck $b_{n+1} \leq b_{n} \checkmark$ * bis Derrasing.

$$
\frac{n+1}{(n+1)^{3}+1} ? \leq \frac{n}{n^{3}+1}
$$

$$
\begin{aligned}
& f(x)=\frac{x}{x^{3}+1} \\
& f^{\prime}(x)=\frac{-2 x^{3}+1}{\left(x^{3}+1\right)^{2}}
\end{aligned}
$$

$$
f^{\prime}(x)<0 \quad \text { WHEN } \quad-2 x^{3}+1<0
$$

$$
1<2 x^{3}
$$

By A.S.T $\sum \frac{(-1)^{n-1} n}{n^{3}+1}$ CONVERGES
(1) $\sum_{n=1}^{\infty}(-1)^{n} e^{2 / n} \sqrt{ }$ Visually check limit first.

So): $\quad \lim _{n \rightarrow \infty}\left(e^{2 / n}\right)=e^{0}=1 \neq 0$. So $\lim _{n \rightarrow \infty}\left((-1)^{n} e^{2 / n}\right) \neq 0$
So $\sum(-1)^{n} e^{2 / n}$ silences by Div. TEJT

EG $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{\sqrt{n^{3}+1}}$ A.S.T.
Sol. $b_{n}=\frac{n}{\sqrt{n^{3}+1}}$

$$
\begin{aligned}
& f(x)=\frac{x}{\sqrt{x^{3}+1}} \text { SHF } f^{\prime}(x)<0 . \\
& \left.f^{\prime}(x)=\frac{\sqrt{x^{3}+1}-\frac{3 / 2 x^{3}}{\sqrt{x^{3}+1}}}{\left(x^{3}+1\right)}\left(\frac{\sqrt{x^{3}+1}}{\sqrt{x^{3}+1}}\right)=\frac{x^{3}+1-3 / 2 x^{3}}{\left(x^{3}+1\right)^{3 / 2}}\right)
\end{aligned}
$$

$$
f^{\prime}(x)<0 \Leftrightarrow x^{3}+1-3 / 2 x^{3}<0
$$

$$
-\frac{1}{2} x^{3}<-1 \quad x^{3}>2 \quad x>\sqrt[3]{2}
$$

By A.ST $\sum(-1)^{n} \cdot \frac{n}{\sqrt{n^{2}+1}}$ CONTOS

NOTE: As we have seen, a partial sum of any convergent series can be used to estimate the sum of the series. When using an approximation, we always have error and an associated REMAINDER. For alternating series, we can find a BOUND for the size of the remainder when an nth partial sum is used.

$$
\begin{aligned}
& S_{N}=\text { Nth Partial } \\
& S_{N}=\sum_{n=1}^{N}(-1)^{n} b_{n}
\end{aligned}
$$

REMAINDER: $R_{N}=S-S_{N}$

THM: [AlTERNATING SERIES ESTIMATION] \qquad
Suppose $\sum_{n=1}^{\infty}(-1)^{n} \cdot b_{n}$ is a convergent alternating series (ie. satisfies conditions of A.S.T.) with $b_{n}>0$, then the following holds:

$$
\text { SUM }=S=\sum_{n=1}^{\infty}(-1)^{n} \cdot b_{n} \quad\left|R_{N}\right|=\left|S-S_{N}\right| \leqslant b_{N+1}^{\text {BOUND }}
$$

Ex 3. How many terms do we need to add in order to approximate the SUM of the following convergent series with an error less than 0.0001 ? Then find this approximation.

$$
\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{1}{n} \quad b_{n}=1 / n \quad b_{n+1}=\frac{1}{n+1}
$$

Sol:

$$
S=\sum_{n=1}^{E_{n}^{\infty}(-1)^{n}} \cdot \frac{1}{n}
$$

APPROXIMATE

$$
\begin{aligned}
& S_{N}=\sum_{n=1}^{N}(-1)^{n} \cdot \frac{1}{n} \\
& \left|R_{N}\right|=\left|S-S_{N}\right|<\underbrace{0.000}_{\text {Set Accuracy }}
\end{aligned}
$$

Ex 4. Let S_{N} be the pith partial sum of the convergent series $S=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3 n+1}$.
A, Give a bound on the error $\left|s-s_{100}\right|$ as a decimal rounded to three decimal places.
B] Use the bound on the remainder to find an N such that $\left|S-S_{N}\right| \leqslant 0.0 \mathrm{~g} \mid$
Sol: A $\left|S-S_{100}\right| \leqslant b_{N+1}=b_{(01}=\frac{1}{3(101)+1}=\frac{1}{304}$

$$
N=100
$$

$$
b_{n}=\frac{1}{3 n+1}
$$

(B) $\left|S-S_{N}\right| \leqslant b_{N+1} \leqslant 0.001$

$$
\begin{array}{r}
\frac{1}{3(N+1)+1} \leqslant 0.001 \quad \text { Solve for } N . \\
N \geqslant 332 \quad N=332
\end{array}
$$

-

