AL ATHRATREN GRS ERTESEEEVS

NOTE So far, the tests for convergence that we have learned have only applied to series
with positive terms. In this section, we will consider series that have terms which
are not always positive. Particularly, we will look at ALTERNATING SERIES where

terms alternate being positive/negative.
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The DIVERGENCE TEST still applies to alternating series. So if the terms of
the series PO NOT tend toward zero, then the series PIVERGES
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Ex 72.: vetermine if the following series CONVERGE or PIVERGE. You must provide proper
- justification.
T e
nE L (ATERNATING HPRIONTC)
=1
ﬂ Ln: ‘/ . b - J
n () .!'t_m“\;n (o)
Chek Wypomess s
(A1) caesk I»'m sk_“ for au n
W Sh 4
Gy
6 w AST LS @
Why does the harmonic series PIVERGE and the
alternating harmonic series CONVERGE?
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NOTE : As we have seen, a partial sum of any convergent series can be used to estimate the

“ sum of the series. When using an approximation, we always have error and an
associated REMAINDER. For alternating series, we can find a BOUND for the size of
the remamder when an nth partial sum is used.
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Suppose le( ') LI is a convergent alternating series (i.e. satisfies conditions of
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@ Give a bound on the error [S-Swe| as a decimal rounded to three decimal places.
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