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So far, the tests for convergence that we have learned have only applied to series 
with positive terms. In this section, we will consider series that have terms which 
are not always positive. Particularly, we will look at ALTERNATING SERIES where 
terms alternate being positive/negative. 

Write out the first 5 terms of the following ALTERNATING SERIES:

The convergence of 
an alternating series 
will depend only on 

To determine if an alternating series CONVERGES, we can apply the 
ALTERNATING SERIES TEST

If the alternating series 
 
 
 
Satisfies both: 
 
 
 
Then the series is CONVERGENT. Otherwise, the test is INCONCLUSIVE 
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The DIVERGENCE TEST still applies to alternating series. So if the terms of 
the series DO NOT tend toward zero, then the series DIVERGES

Why does the harmonic series DIVERGE and the 
alternating harmonic series CONVERGE?

Determine if the following series CONVERGE or DIVERGE. You must provide proper 
justification. 
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As we have seen, a partial sum of any convergent series can be used to estimate the 
sum of the series. When using an approximation, we always have error and an 
associated REMAINDER. For alternating series, we can find a BOUND for the size of 
the remainder when an nth partial sum is used.
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Suppose    is a convergent alternating series (i.e. satisfies conditions of 
A.S.T.) with                , then the following holds:

How many terms do we need to add in order to approximate the SUM of the 
following convergent series with an error less than 0.0001? Then find this 
approximation. 

Let        be the nth partial sum of the convergent series   
               

Give a bound on the error                as a decimal rounded to three decimal places. •
 

Use the bound on the remainder to find an n such that                               •




