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'. We are going to learn another test that can be performed on certain @

—<— infinite series to determine if they CONVERGE (i.e. have a fixed, finite sum)
or DIVERGE (i.e. do not). This test is called the INTEGRAL TEST and it
involves comparing an infinite series to an improper integral.
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% To be able to fully understand the integral test, we first need a way fo
visvalize a series.
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To find if a series converges, we need to see if this area is a fixed, finite
value! We will use what we know about improper integrals.
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¥ Toillustrate the idea if the INTEGRAL TEST, we will consider two separate
examples.
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|: Test each series for CONVERGENCE or PIVERGENCE.
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% Using the integral test, we can determine that a given series converges but we CANNOT
determine what it converges to. We can, however, get a good approximation by using
partial sums. Naturally, approximations are not exact. We define the REMAINPER to be
the difference between the exact value of a sum and the approximate valve
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3¢ Using ideas similar to the integral test, we can figure out
approximately how big the remainder will be... These are
called REMAINDER ESTIMATES.
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Ex 3. Consider the series Z"[l\e
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Find an explicit upper bound for the remainder Rn when estimating the

series with the nth partial sum.
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Find an n for which the upper bound on Rn is less than 0.0001, and then
compute the nth partial sum to 9 digits for this specific n.
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