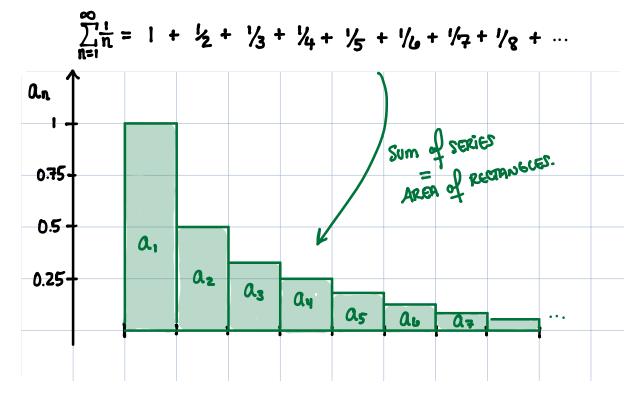
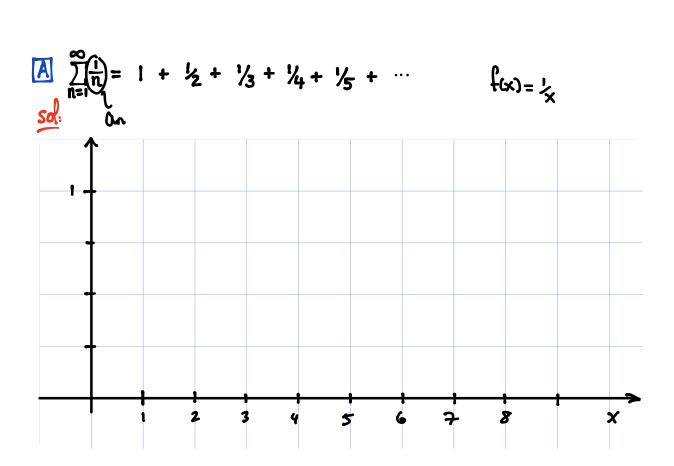


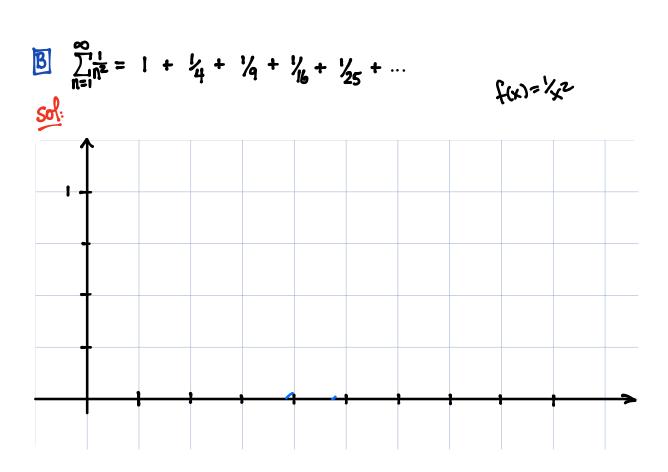
* To be able to fully understand the integral test, we first need a way to visualize a series.



To find if a series converges, we need to see if this <u>area</u> is a fixed, finite value! We will use what we know about improper integrals.

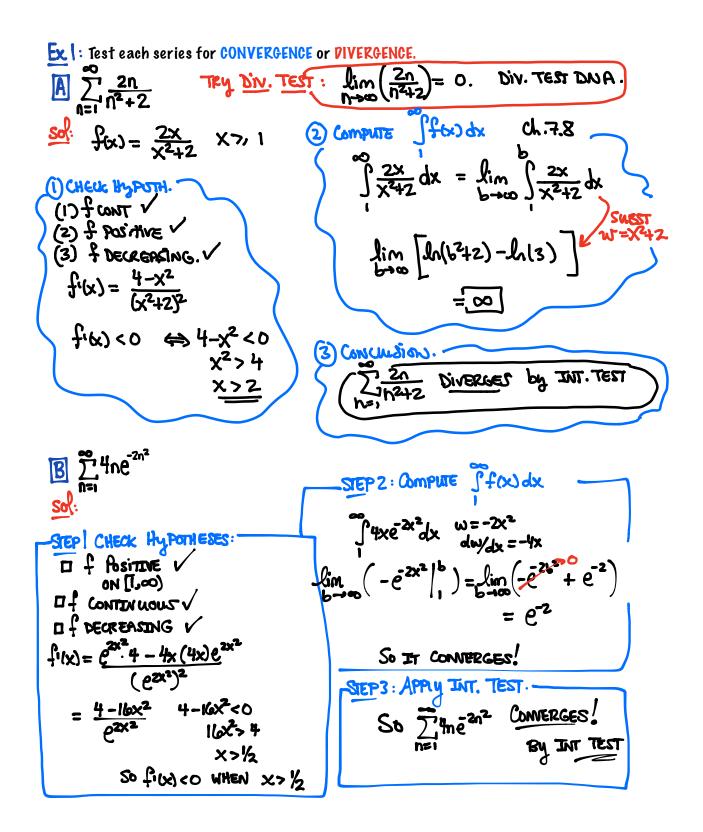
* To illustrate the idea of the INTEGRAL TEST, we will consider two separate examples.

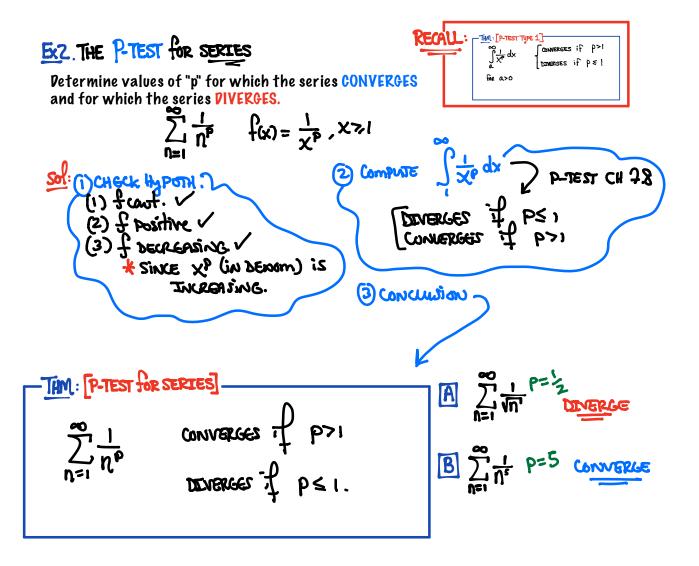




-

PART 3: THE ENTERIAL TEST
SUPPose
$$f$$
 is Contributions, Positions, i Decreansitive an $[C, \infty)$
and let $a_n = f(n)$
(1) If $\int_{0}^{\infty} f(x) dx$ converges Then $\sum_{n=0}^{\infty} a_n$ converges.
(2) If $\int_{0}^{\infty} f(x) dx$ Diverges Then $\sum_{n=0}^{\infty} a_n$ converges.
(3) If $\int_{0}^{\infty} f(x) dx$ Diverges Then $\sum_{n=0}^{\infty} a_n$ converges.
(4) If $\int_{0}^{\infty} f(x) dx$ Diverges Then $\sum_{n=0}^{\infty} a_n$ durings be becaused.
(5) If $\int_{0}^{\infty} f(x) dx$ Diverges Then $\sum_{n=0}^{\infty} a_n$ durings be becaused.
(2) If $\int_{0}^{\infty} f(x) dx$ Diverges Then $\sum_{n=0}^{\infty} a_n$ durings be becaused.
(3) If NUT CHECK 2 Hypothess.
* Not necessary for for the Diverges Begand Simps
(1) Show the Extension of Aways volue!
(1) Show $f_{0}(x) < 0$ for $x > c$ the formation of the CHECK of the CHE





Sing the integral test, we can determine that a given series converges but we CANNOT determine what it converges to. We can, however, get a good approximation by using <u>partial sums</u>. Naturally, approximations are not exact. We define the <u>REMAINDER</u> to be the difference between the <u>exact</u> value of a sum and the <u>approximate</u> value

