

$$\int_{\text{PARTIAL}}^{\text{Th}} S_n = \frac{\text{Sum of PIRST}}{n \text{ TERMS}} = a_1 + a_2 + a_3 + a_4 + \dots + a_n$$

\* In this way we create a SEQUENCE of PARTIAL SUMS [5m]. The limit of this sequence (I.e. when n goes to infinity) will represent the SUM of the original series!

Find: [CONVERGENCE of SERIES]: Given a series  $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \dots$ , let  $S_n$  denote the nth partial sum:  $S_n = \sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n$ If the sequence  $\{S_n\}$  is convergent and  $\lim_{n \to \infty} S_n = S$  exists as a real number, then the series  $\sum_{n=1}^{\infty} a_n$  is called CONVERGENT and we write:  $\sum_{n=1}^{\infty} a_n = S$  or  $a_1 + a_2 + a_3 + \dots = S$ The number s is called the sum of the series. If the sequence  $\{S_n\}$  is divergent, then the series is PIVERGENT.

**Exp** Po the PARTIAL SUMS for the series  $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$ Support the fact the sum is 1 (as stated in the previous section)?

| п  | Sum of first <i>n</i> terms |
|----|-----------------------------|
| 1  | 0.50000000                  |
| 2  | 0.75000000                  |
| 3  | 0.87500000                  |
| 4  | 0.93750000                  |
| 5  | 0.96875000                  |
| 6  | 0.98437500                  |
| 7  | 0.99218750                  |
| 10 | 0.99902344                  |
| 15 | 0.99996948                  |
| 20 | 0.99999905                  |
| 25 | 0.99999997                  |

Ex 3. Calculate the sum of the series.  $\sum_{n=1}^{\infty} Q_n$  whose partial sums are given by: A  $S_n = \frac{4n+3}{8n+1}$  Solution: Sol



Some series have a special property that the terms of the series cancel each other out. When this happens we have what is called a TELESCOPING SERIES and it is easy for us to find the sum. Check it out:

Ex 4 : Find the sum of each series by determining a formula for the Nth partial sum and taking a limit:

C

$$\underbrace{A}_{n=1}^{\infty} \underbrace{\sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right)}_{n=1}$$



## PART 4: GEONETRES SERIES

\* An important type of infinite series is called a GEOMETRIC SERIES in which the <u>ratio</u> between subsequent terms is constant.



Ex 2. Determine if the following GEOMETRIC SERIES converge or diverge. If they converge, find the SUM of the series.  $\begin{array}{c}
 \mathbb{A} \quad \sum_{n=1}^{\infty} \frac{3}{2^n} \\
 \mathbb{S} \quad \sum_{n=1}^{\infty} 3 \cdot 2^n \\
 \mathbb{S} \quad \sum_{n=1}^{\infty} 3^n \\$ 





•



**Ex?** Using the aid of a GEOMETRIC SERIES, express the decimal as a ratio of integers (in reduced form)

Sof





**Finally, there are some important <b>PROPERTIES** of series that we should be familiar with:

**PROPERTY**: A finite number of terms does not affect the convergence of a series. Effectively, this means that it does not matter where the series starts.