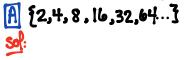
| CH II.1: SEQUENCES<br>PART 1: THE BASELCS | NotAtion<br>There are 3 ways to<br>express a SEQUENCE |
|-------------------------------------------|-------------------------------------------------------|
| <u>DERV: [SEQUENCE]</u> :                 |                                                       |
|                                           |                                                       |

## Ex ! [FINDING TERMS of A SEQUENCE]

For each of the following sequences, give the formula for the nth term of the sequence and write out the first several terms of the sequence.

 $\begin{bmatrix} A \end{bmatrix} \left\{ \frac{n+1}{n} \right\}_{n=1}^{\infty}$ 


 $\mathbb{B} \left\{ (-1)^n \cdot n^2 \right\}_{n=0}^{\infty}$ 

 $[] \{\sqrt{n-2}\}_{n=2}^{\infty}$ 

 [] {sin(nπ)] =1

## Ex 2. [FINDING an]

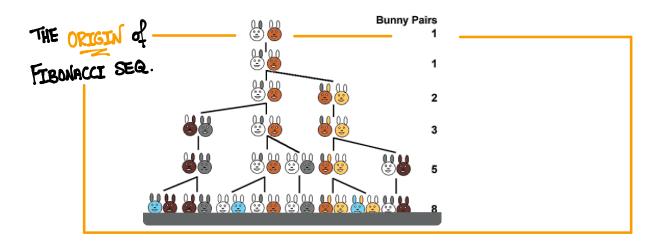
For each of the following sequences, give a formula for the general term  $A_n$  of the sequence, assuming that the given pattern continues.



HOW ABOUT 51,2,4,8,16,...]

B {1, = }, = , = 4, = , = 6, ... }

## $\begin{bmatrix} 2 \\ \frac{4}{3}, \frac{5}{9}, \frac{6}{27}, \frac{7}{21}, \cdots \end{bmatrix}$


[] {물,물, 물, 유, 님, ...] Sof

NOTE: The formulae found above are referred to as the CLOSEP FORM of the respective - sequences. Not all sequences have a closed form.

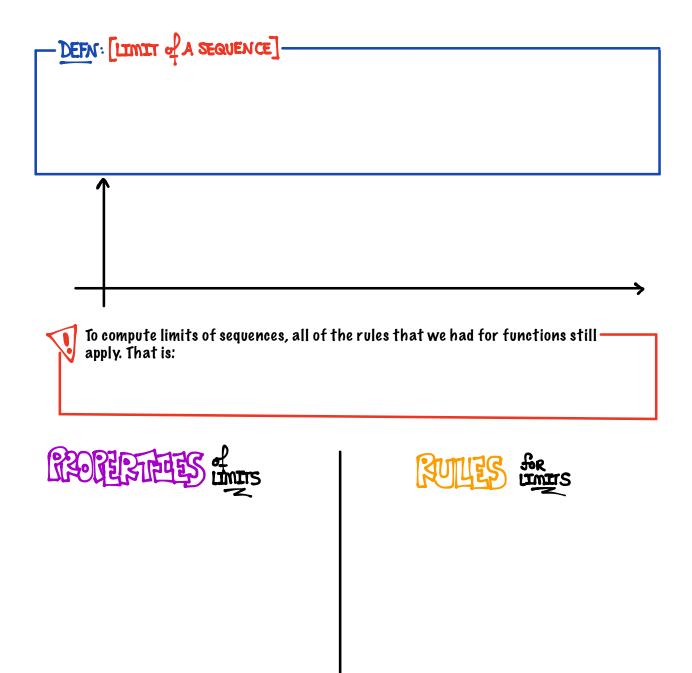
<u>E</u>. {7,1,8,2,8,1,8,2,8,4,5,...}

**\*\*** Some sequences can be defined by relating each term to the preceding terms of the sequence. This is called a **RECURSIVE SEQUENCE**.

| -DEFN: [RECURSIVE SEQUENCE] | <b>5</b> .  |
|-----------------------------|-------------|
|                             | <u>EX</u> . |
|                             |             |
|                             |             |
|                             |             |
|                             |             |
|                             |             |
|                             |             |



Ex 3. [PINDING TERMS of A RECURSIVE SEQ]. Find the first 4 terms of each sequence:

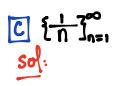


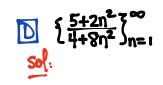

Ex 4. [FINDING RECURSIVE FORMULA] Find a recursive formula for each sequence:

A {1,2,6,24,120,...}

|       | HOW TO                    |         | DY.   | 沿       | 574    | <u></u> | SEQU | ENCE           | *                             | Plot<br>y-a        |                                     |               |              |               | κη v          |
|-------|---------------------------|---------|-------|---------|--------|---------|------|----------------|-------------------------------|--------------------|-------------------------------------|---------------|--------------|---------------|---------------|
|       |                           |         |       |         |        |         |      |                |                               |                    |                                     |               |              |               |               |
|       |                           |         |       |         |        |         |      |                |                               |                    |                                     |               |              |               |               |
|       |                           |         |       |         |        |         |      |                |                               |                    |                                     |               |              |               |               |
|       |                           |         |       |         |        |         |      |                |                               |                    |                                     |               |              |               |               |
|       |                           |         |       |         |        |         |      |                |                               |                    |                                     |               |              |               |               |
| ۷ but | could a<br>this is        | usually | not v | ver y k | nelpfu | ul.     |      |                | ,                             |                    |                                     | <u> </u>      |              |               | <u> </u>      |
| v but | could a<br>this is<br>THE | usually | not v | very H  | A S    | ul.     |      | * \<br> <br>;; | Ne o<br>napp<br>as n<br>the L | ens<br>goes<br>IMI | to th<br>to th<br>to in<br>f OF     | e te<br>nfini | rms<br>ty. 1 | of a<br>his i | sequ<br>s cal |
| v but | this is<br>THE            | usually | not v | very H  | A S    | ul.     |      | * \<br> <br>;; | Ne o<br>napp<br>as n<br>the L | ens<br>goes        | to th<br>to in<br><mark>r OF</mark> | e te<br>nfini | rms<br>ty. 1 | of a<br>his i | sequ<br>s cal |
| v but | this is<br>THE            | usually | not v | very H  | A S    | ul.     |      | * \<br> <br>;; | Ne o<br>napp<br>as n<br>the L | ens<br>goes<br>IMI | to th<br>to in<br><mark>r OF</mark> | e te<br>nfini | rms<br>ty. 1 | of a<br>his i | sequ<br>s cal |
| v but | this is<br>THE            | usually | not v | very H  | A S    | ul.     |      | * \<br> <br>;; | Ne o<br>napp<br>as n<br>the L | ens<br>goes<br>IMI | to th<br>to in<br><mark>r OF</mark> | e te<br>nfini | rms<br>ty. 1 | of a<br>his i | sequ<br>s cal |

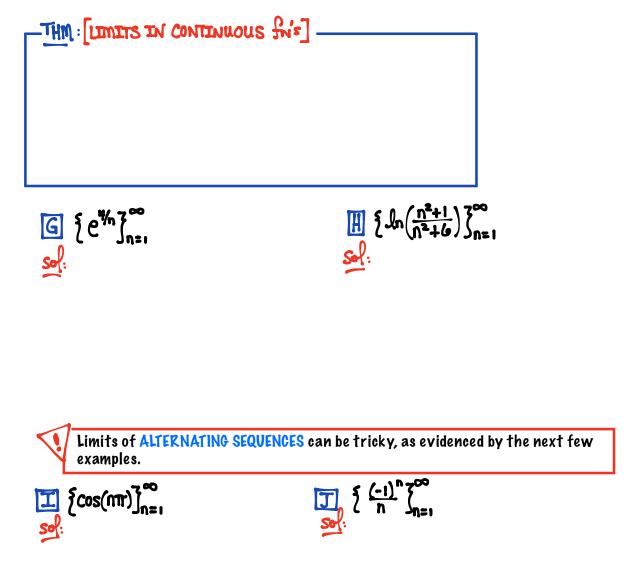





Determine if the following sequences **CONVERGE** or **DIVERGE**. If it converges, find the limit.

 $[A] \{(7_3)^n\}_{n=0}^{\infty}$ sol:


 $\frac{\mathbb{B}}{\mathbb{A}} \left\{ \begin{pmatrix} 3/2 \end{pmatrix}^n \right\}_{n=0}^{\infty}$ 







 $\begin{bmatrix} \mathbf{F} \\ \mathbf{e}^{n} + \mathbf{I} \\ \mathbf{e}^{n} - \mathbf{I} \end{bmatrix}_{n=1}^{\infty}$ 



PART 4: SOME (LIAPAGITERSTRACS of SEQUENCES