CH II.: Se9yences

PART1:THE BASSECS
DEFN: [SEQUENCE]

Exl. [FINDTNG TERMS of A SEQUENCE]

For each of the following sequences, give the formula for the nth term of the sequence and write out the first several terms of the sequence.

(A) $\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}$

(B) $\left\{(-1)^{n} \cdot n^{2}\right\}_{n=0}^{\infty}$
(C) $\{\sqrt{n-2}\}_{n=2}^{\infty}$
(D) $\{\sin (n \pi)\}_{n=1}^{\infty}$

Ex 2. [FINOING a_{n}]

For each of the following sequences, give a formula for the general term a_{n} of the sequence, assuming that the given pattern continues.
田 $\{2,4,8,16,32,64 \ldots\}$
sol:
$\{1,2,4,8,16, .$.

B $\left\{1, \frac{-1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5}, \frac{-1}{6}, \ldots\right\}$

Sol:

C] $\left\{\frac{4}{3}, \frac{5}{9}, \frac{6}{27}, \frac{7}{81}, \ldots\right\}$
(D) $\left\{\frac{7}{2}, \frac{7}{5}, \frac{-7}{8}, \frac{7}{11}, \frac{-1}{2}, \ldots\right\}$

NOEE: The formulae found above are referred to as the CLOSED FORM of the respective sequences. Not all sequences have a closed form.
ㅌ.. $\{7,1,8,2,8,1,8,2,8,4,5, \ldots\}$
** Some sequences can be defined by relating each term to the preceding terms of the sequence. This is called a RECURSIVE SEQUENCE.

DDEFN: [RECURSTVE SEQUENCE]
Ex.

Ex 3. [FINDING TERMS of A RECURSIVE SEQ]. Find the first 4 terms of each sequence:
(A) $a_{n}=3 a_{n-1}+2$ for $n \geqslant 2$ $a_{1}=1$
sol:

B $a_{n}=a_{n-1}+2 a_{n-2}$ for $n \geqslant 3$

$$
a_{1}=1 \quad a_{2}=2
$$

sol:

Ex 4. [FINDING RECURSTIE FORMuLA] Find a recursive formula for each sequence:
(A) $\{1,2,6,24,120, \ldots\}$

Sol:
[B] $\{1,3,7,15,31, \ldots\}$
Sol:

We could also just plot the terms on a number line, but this is usually not very helpful.

NOTE: A more precise definition of this is given next:
\square

\square
Runtes fir LIMITS

Ex 5. [CONVEGEECE of SEQUENCES].

Determine if the following sequences CONVERGE or DIVERGE. If it converges, find the limit.

(C) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$

(- $\left\{\frac{5+22^{2}}{4+8 n^{2}}\right\}_{n=1}^{\infty}$
Sol:

Thim: [umirs In conitinuous firs]

Limits of ALTERNATING SEQUENCES can be tricky, as evidenced by the next few examples.
$\begin{array}{ll}\text { I] }\{\cos (n \pi)]_{n=1}^{\infty} & \text { [丁] } \\ \text { Sof: } & \left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}\end{array}$

