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There are 3 ways to 
express a SEQUENCE

For each of the following sequences, give the formula for the nth term of the 
sequence and write out the first several terms of the sequence. 

For each of the following sequences, give a formula for the general term      of the 
sequence, assuming that the given pattern continues.  
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The formulae found above are referred to as the CLOSED FORM of the respective 
sequences. Not all sequences have a closed form. 

Some sequences can be defined by relating each term to the preceding terms of the 
sequence. This is called a RECURSIVE SEQUENCE.
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Find the first 4 terms of each sequence:

Find a recursive formula for each sequence:
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Plot n on x-axis and       on 
y-axis. 

We could also just plot the terms on a number line, 
but this is usually not very helpful. 

A more precise definition of this is given next:

We often want to know what 
happens to the terms of a sequence 
as n goes to infinity. This is called the 
LIMIT OF THE SEQUENCE and is 
denoted by: 
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To compute limits of sequences, all of the rules that we had for functions still 
apply. That is:
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Determine if the following sequences CONVERGE or DIVERGE and provide justification. If it 
converges, find the limit. It may be helpful to plot a few points of the sequence. 
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Limits of ALTERNATING SEQUENCES can be tricky, as evidenced by the next few 
examples. 
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There are two ways to determine if a sequence is INCREASING or DECREASING (or 
neither). 

Check conditions from definition.       OR •
Let f(n)=     and compute f'(n).  •

If f'(n)>0 for n>c then the sequence is INCREASING ‣
If f'(n)<0 for n>c then the sequence is DECREASING‣

There are some very important connections between monotonic 
sequences, bounded sequences, and convergent sequences. (These 
are great TRUE/FALSE questions)
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Find the first 5 terms of each sequence, plot     vs. n, and then determine if each is 
INCREASING, DECREASING, or neither. Also determine if the sequence is BOUNDED.


