

How can we "approximate" a function f(x) near a point x=a with a polynomial?

+ WE WILL FIND THAT :

Ex. Assuming (for now) that they exist, find the TAYLOR SERIES for each function centered at x=a (where a is specified) and find the associated <u>radius of convergence</u>.

 $[A] f(x) = e^{x} @ x = 0. (A=0)$

-Note: WE MAY JUST BE ASKED FOR A TRY LOR POLYNOMILAL...IN THIS CASE:

$$C = f(x) = h(1+x) @ x = 0.$$

* Some MACLAURIN SERIES for common functions can be seen in the following table. We found some of these above. Now we will use them to find more!

$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	R = 1
$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$	$R = \infty$
$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$R = \infty$
$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$R = \infty$
$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	R = 1
$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	R = 1
$(1+x)^{k} = \sum_{n=0}^{\infty} \binom{k}{n} x^{n} = 1 + kx + \frac{k(k-1)}{2!} x^{2} + \frac{k(k-1)(k-2)}{3!} x^{3} + \cdots$	R = 1

* Our second <u>method</u> of finding Taylor series involves: With from Old

Ex 2: Using the table above, find the MACLAURIN SERIES for each of the following functions and find the associated <u>radius of convergence</u>.

$$[c] f(x) = x \sin(x)$$

 $A f(x) = e^{2x}$

PART 3: WHEN DOES f(x) EQUIN $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$?

If a function is infinitely differentiable, when will the <u>Taylor Series</u> be <u>EQUAL</u> to the function? We must consider two things:

 $^\circ$ Find where the Taylor Series converges (I.e. the interval of convergence).

 $^{\circ}$ Verify that the <u>partial sums</u> of the series do in fact approach the function.

THEOREM: [Aylor SERIES vs. f(x)] If $f(x) = T_{n}(x) + g(x)$, where $T_{n}(x)$ is the Nth degree Taylor Polynomial of f(x) centered at x=a and if for |x-a| < R $\lim_{N \to \infty} R_{n}(x) = 0$ Then f(x) is EQUAL to the sum of its Taylor Series on the interval |x-a| < R. **NOTE:** To show that $\lim_{N \to \infty} R_{n}(x) = 0$ we have a very useful inequality: **TAYLOR'S** FUNCTIONAL If $|f^{(M+1)}(x)| \le M$ for $|x-a| \le d$ then the remainder of the Nth degree Taylor Polynomial approximating f(x) at x=a satisfies: $|R_{n}(x)| \le \frac{M[(x-a]^{N+1}]}{(N+1)!}$ for $|x-a| \le d$

Ex 3. Prove that the MACLAURIN SERIES for sin(x) found in example 1 is equal to the function for all x. Solve: **Note:** TAYLOR POLYNOMIALS can work very well to approximate a function (provided you are on the interval of convergence). Of course, the larger N (i.e. the more terms we take in the polynomial), the better the approximation gets.

ESSOS IN HIMLES ROLANOMERS PART 4:

XX To determine how <u>effective</u> a Taylor Polynomial is at approximating a function, we look at the <u>ERROR/REMAINDER</u>.

ALT X=0 Ex 6 The 3rd degree TAYLOR POLYNOMIAL for fx)= sin(x) is given by $T_3(x) = x - \frac{x^3}{3!}$ Use TAYLOR'S INEQUALITY to determine a "d" for which $[sin(x) - T_3(x)] \le 0.001$ for all x in [-d,d].

Sol:

Use TAYLOR'S INEQUALITY to determine an N for which the Nth degree TAYLOR POLYNOMIAL for f(x) = sin(x) centered at a=0 satisfies $|sin(3)-T_N(3)| \le 0.0005$

Use the ALTERNATING SERIES ESTIMATION THEOREM to estimate the <u>range of values</u> of x for which the approximation $\arctan(x) \approx x - \frac{x}{3} + \frac{x}{5}$ is accurate to within 0.0002.

*Let's take a step back to see what all of this means and why we actually care about it!

 \star One application of Taylor series is that they can now be used to APPROXIMATE Integrals!

 $\mathbf{E}_{\mathbf{X}}$. Evaluate the integral as an infinite series.

$$\int \frac{e^{2x}}{x} dx$$