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. InCh 11.9 we were able o find POWER SERIES REPRESENTATIONS for ————
° functions that had the form ‘.F(X)' ]
“1-0

Now, we will learn a technique to do this for more GENERAL functions!
What we want is to be able to express a function as a power series:

o) = T (x-0)"
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How can we ‘approximate” a function f(x) near a point x=a with a polynomial?
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ﬂ If we let N go to infinity then we get a SERIES:
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W If the center a” of the series is a=0, then we *sometimes* use another name for the

series:
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. Find Taylor Series/Polynomials (and R.0.C’s)

2. Verify that f(x) is its Taylor series
on the Lo.C.

3. Discuss ERROR associated with polynomial
approximations

4. Understand why this is AWESOME!
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% The first method is called: mq

Bx.| Assuming (for now) that they exist, find the TAYLOR SERIES for each function
— centered at x=a (where a is specified) and find the associated radius of convergence.

Bl f=e* @x=0. (a=0)
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¥ Some for common functions can be seen in the following table. We
found some of these above. Now we will use them to find more!

l :E\ = | X + x X R=1
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n=o n! 1! 2! 3!
y x?
sinx = 2(—1))——— =y — — + — — — + R=x
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‘ o 53 X X
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% Qur second method of finding Taylor series involves: m&«n

EX 2, Using the table above, find the for each of the following
— functions and find the associated radius of convergence.
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+% If a function is infinitely differentiable, when will the Taylor Series be to the
function? We must consider two things:
o Find where the Taylor Series converges (l.e. the interval of convergence).
o Verify that the partial sums of the series do in fact approach the function.

~THEOREN - [Ty Loe SERTES vs. £59]

If f60)= T, ) + R&), where Tu(x) is the Nth degree Taylor Polynomial of £(x) centered at
x=a and if for Ix-al<R )
Jim R0 =0
-

Then f(x) is EQUAL to the sum of its Taylor Series on the interval Ix-al<R.

NOTE: To show that Xm R,(x) = 0O wehave a very useful inequality:
- N =>co
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If I:P"'m(x)\s M for Ix-alsd thentheremainder of the Nth degree Taylor
Polynomial approximating f(x) at x=a satisfies:

| Ruta | < %’i—ﬁ‘ for Kool < d
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Ex 3. Prove that the for sinx) found in example 1 is equal to the
—;Q function for all x.



)\fo‘(g TAYLOR POLYNOMIALS ean work very well to approximate a funetion (provided you
are on the interval of convergence). Of course, the larger N (i.e. the more terms we
|__takein the polynomial), the better the approximation gets.
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3% To determine how effective a Taylor Polynomial is at approximating a function, we
look at the ERROR/REMAINDER.
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5 For §60)= Cua, find the TAYLOR POLYNOMIAL of degree 3 centered at a=0
" and then use TAYLOR'S INEQUALITY to estimate the error when Qs xs0.1
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At x=0

The 3rd degree TAYLOR POLYNOMIAvaor F)=sin(x) is given by T3(x)= X - "}3!
= " Use TAYLOR'S INEQUALITY to determine a "d" for which [sin00-Ta(x)\< 0.001
for all x in [-d,d1.

sof:



5‘_? Use TAYLOR'S INEQUALITY to determine an N for which the Nth degree
ST TAYLOR POLYNOMIAL for fpd=sin(x) centered at a=0 satisfies |sin(®-Tu(3)| £0.0005

-

Bcg. Use the to estimate the range of values
— of x for which the approximation arctan()x X- x}g + X7g
is accurate to within 0.0002.
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¥ Let’s take a step back to see what all of this means and why we actually
care about it!
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¥ One application of Taylor series is that they can now be used to APPROXIMATE Integrals!

EX. Evaluate the integral as an infinite series. Q_z_" dx.
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