
How can we “approximate” a function f(x) near a point x=a with a polynomial?
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In Ch 11.9 we were able to find POWER SERIES REPRESENTATIONS for 
functions that had the form  
 
Now, we will learn a technique to do this for more GENERAL functions! 
What we want is to be able to express a function as a power series: 
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If the center “a” of the series is a=0, then we *sometimes* use another name for the 
series:

If we let N go to infinity then we get a SERIES:

Find Taylor Series/Polynomials (and R.o.C’s) 1.
Understand why this is so AWESOME! 2.
Discuss ERROR associated with polynomial 3.
approximations  
Verify that f(x) is EQUAL TO its Taylor series 4.
on the I.o.C. 
Look at some APPLICATINS 5.
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Assuming (for now) that they exist, find the TAYLOR SERIES for each function 
centered at x=a (where a is specified) and find the associated radius of convergence.

The first method is called:
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Using the table above, find the MACLAURIN SERIES for each of the following 
functions and find the associated radius of convergence. 

Some MACLAURIN SERIES for common functions can be seen in the following table. We 
found some of these above. Now we will use them to find more!

Our second method of finding Taylor series involves:
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Let’s take a step back to see what all of this means and why we actually 
care about it!
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To show that      we have a very useful inequality:

If     , where          is the Nth degree Taylor Polynomial of f(x) centered at 
x=a and if for |x-a|  R 
 
 
Then f(x) is EQUAL to the sum of its Taylor Series on the interval |x-a|  R . 

If    for               then the remainder of the Nth degree Taylor 
Polynomial approximating f(x) at x=a satisfies:

If a function is infinitely differentiable, when will the Taylor Series be EQUAL to the 
function? We must consider two things: 

Find where the Taylor Series converges (I.e. the interval of convergence).  ◦
Verify that the partial sums of the series do in fact approach the function. ◦
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Prove that the MACLAURIN SERIES for          found in example 1 is equal to the  
function for all x.
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To determine how effective a Taylor Polynomial is at approximating a function, we 
look at the ERROR/REMAINDER. 

TAYLOR POLYNOMIALS can work very well to approximate a function (provided you 
are on the interval of convergence). Of course, the larger N (i.e. the more terms we 
take in the polynomial), the better the approximation gets.  
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For         , find the TAYLOR POLYNOMIAL of degree 3 centered at a=0 
and then use TAYLOR'S INEQUALITY to estimate the error when  
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The 3rd degree TAYLOR POLYNOMIAL for                   is given by  
Use TAYLOR'S INEQUALITY to determine a "d" for which  
for all x in [-d,d]. 
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Use the ALTERNATING SERIES ESTIMATION THEOREM to estimate the range of values 
of x for which the approximation 
is accurate to within 0.0002.

Use TAYLOR'S INEQUALITY to determine an N for which the Nth degree 
TAYLOR POLYNOMIAL for               centered at a=0 satisfies 
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Evaluate the integral as an infinite series

One application of Taylor series is that they can now be used to APPROXIMATE Integrals!


