

We will take a closer look at graphing equations using polar coordinates and we will then investigate how to find the AREA enclosed by a polar graph.

New terminology:
The POLE: $\longrightarrow(0,0)$ (i.e. origin).
The POLAR AXIS: \rightarrow Pos. x axis

Part 1: Converting

EQUATIONS EQURTLO
ELUTIONS
** Sometimes it can be beneficial to convert between equations given in CARTESIAN coordinates and equations given in POLAR equations. To do this, we use what we know about converting coordinates...

Ex 1. Convert the following equation (given in Cartesian coordinates) to an equation given in Polar coordinates:

$$
2\left(x^{2}+y^{2}\right)=4 y
$$

Ex 2. Convert the following equation (given in Polar coordinates) to an equation given in Cartesian coordinates:

$$
r=2 \cos (\theta)
$$

** It is often necessary to find the intersection points of two cur ves given in polar coordinates. This can be TRICKY since points (and curves) can have multiple representations in polar.

To find all intersection points:

- STEP 1:
- STEP 2:

Ex 3. Find all intersection points of the following curves given in polar coordinates. Verify the intersection points graphically!
(A) $r=1+2 \cos (\theta)$ and $r=4 \cos (\theta)$ Sol:

B $r=\cos (20)!r=1 / 2$
Sol:

** We will derive a formula that can be used to find the AREA enclosed by a polar curve.

To determine the bounds of integration, you MUST make sure that you know how the polar curve is drawn for increasing theta. It can be deceptive! Consider this example: $r=1+2 \cos (\theta)$.

** Let's check out how to find area of circles:

Ex. Find the AREA of each polar region:

(A) $r=4$
$[B r=\cos (2 \theta)$

Ex 5. Find the AREA of each of the following regions:
Sol: $r=\theta$

Br= $\sin (4 \theta) 1$ Retal sol:

(C) $r=1-\cos \theta ; r=1$

