

Sometimes it can be beneficial to convert between equations given in CARTESIAN coordinates and equations given in POLAR equations. To do this, we use what we know about converting coordinates...

5. Convert the following equation (given in Cartesian coordinates) to an equation given in Polar coordinates:

$$2(x^{2}+y^{2}) = 4y$$

$$2(x^{2}+y^{2}) = 4y$$

$$2 \cdot r^{2} = 4r \sin \theta$$

$$r = 2 \sin \theta$$

$$y = r \sin \theta$$

5.2. Convert the following equation (given in Polar coordinates) to an equation given in Cartesian coordinates:

$$\Gamma = 2cos(\theta).$$

$$\Gamma = 2 \cdot \frac{x}{\Gamma}$$

$$r^{2} = rsin\theta$$

$$Y = rsin\theta$$

$$Y = rsin\theta$$

$$\Gamma = 2 \cdot \frac{x}{\Gamma}$$

$$r^{2} = 2x$$

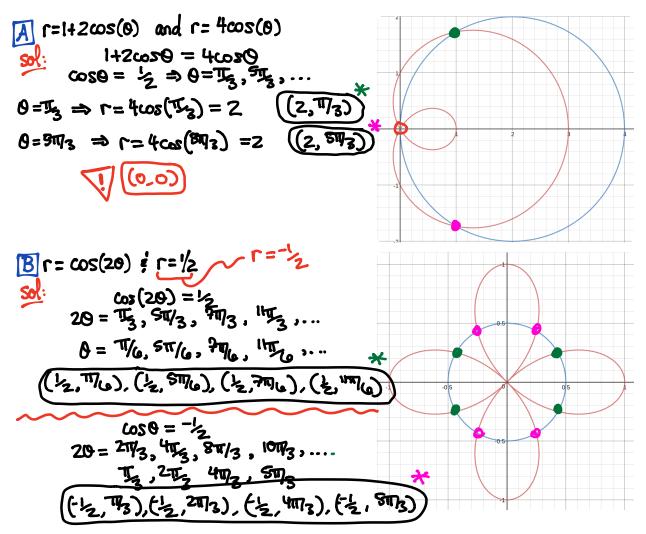
$$x^{2} - 2x + y^{2} = 0$$

$$(x - i)^{2} + y^{2} = 1$$

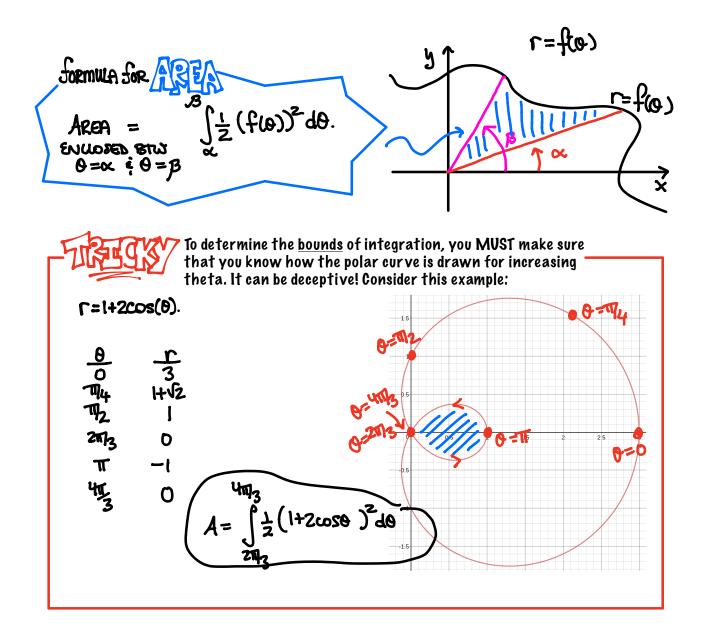
****** It is often necessary to find the intersection points of two curves given in polar coordinates. This can be **TRICKY** since points (and curves) can have multiple representations in polar.

To find all intersection points:
 STEP 1: SET EQUATIONS EQUAL. Some for O significants courses for O significants intersect.
 STEP 2: CHECK ON GRAPH TO MAKE SURE you bignit MILS Any U.

Ex 3. Find all intersection points of the following curves given in polar coordinates. Verify the intersection points graphically!



We will derive a formula that can be used to find the AREA enclosed by a polar curve.



+ Let's check out how to find area of circles:

