
** In 20 we use the XY Cartesian Plane to help us organize points in space:

> Another way of locating a point in space is to use POLAR COORDINATES where we specify an angle and a radius.

PART 2: CONERTING CAPFIESTAN \Leftrightarrow POTHR

Ex 1. Convert each order pair from Cartesian coordinates to POLAR COORDINATES.

Can you find another polar coordinate for this ordered pair? How about with negative " r "?

B $(-4,-4)$ Sof:

Ex2. Convert each coordinate from polar coordinates to CARTESIAN COORDINATES

RHET: POMT CORNES

$$
r=f(\theta)
$$

* Given a function in POLAR COORDINATES, we can sketch a curve by creating a table of values (for various angles, find the corresponding radius)

Ex3. Graph the following:
A) $r=4$

[B] $r=\theta$
sol:

[C] $r=3 \sin (2 \theta)$ Sol:

(D) $r=1+2 \cos (\theta)$ Sol:

Note: We can also easily sketch regions (wedges, discs, etc) using polar coordinates and inequalities. Check it out:
Ex4: Sketch each of the following regions:
[A] $r \leqslant 1, \pi / 2 \leqslant \theta \leqslant 3 \pi / 2$
sof:
[B] $1 \leqslant r<2, \pi \leqslant \theta \leqslant 2 \pi$ Sol:

** Suppose we have the following function in POLAR COORDINATES: $r=f(\theta)$ This is a special type of PARAMETRIC EQ with parameter θ

Ex5: Find the equation of the TANGENT LINE to the graph of $r=3 \sin (2 \theta)$ when $\theta=\pi / 4$
Sol:

