CH 10.2 Catchy

G50 14: We will learn how to find derivatives of parametric curves in order to find TANGENT LINES to the curves.

Part 1: S20 RE of A Parametric curve

Consider the parametric curve:
Where y is also a differentiable function of x . Notice:

* This allows us to the the SLOPE of the TANGENT LINE to a parametric curve at a given point without ever having to eliminate the parameter " 4 ".

Ex 1. Consider the PARAMETRIC CURVE:

$$
(x, y)=\left(2+t^{2}, t+t^{2}\right)
$$

- Find the direction of increasing " t " values
- Find $d y / d x$ in terms of "t"
- Find the equation of the TANGENT LINE to the curve at the point $(3,0)$.
- Find the coordinates of points on the curve where the tangent is horizontal and vertical.

Salt

Ex 2. Find the equation of the TANGENT LINE to the parametric curve when $t=1$

$$
(x, y)=\left(t^{2}+4 t, 2+1 / t\right)
$$

Sol:

Ex 3. Find the equation of the TANGENT LINE to the parametric curve at the point $(0,0)$

$$
(x, y)=\left(2 \sin (t), 2 t+t^{2}\right)
$$

Sol:

Ex 4: For the following parametric curve, at what points does the TANGENT LINE to the curve have slope 1?

$$
(x, y)=\left(8 t / 3 / 3+5,18 t^{2}-16 t+1\right)
$$

Ex 5. Show that the following parametric cur ve has two TANGENT LINES at the point $(0,0)$ and find equations of both of them.

$$
(x, y)=(2 \sin (\theta), \cos (\theta) \sin (\theta))
$$

