
** Consider a particle moving along the curve C in the indicated direction. We can't describe C as a function $y=f(x)$ since the curve does not pass the vertical line test.... But we can still describe the motion of the particle using what we call PARAMETRIC EQUATIONS.

Ex 1: Sketch the curve defined by the PARAMETRIC EQUATIONS:

$$
x=t^{2}+2 t \quad \text { and } \quad y=t+1
$$

Sol:
D) 5 NOS DEMO : Let's look at some awesome curves that are defined parametrically.

$$
\begin{aligned}
& \text { Ex ! : } \\
& x=t+\sin (5 t) \\
& y=t+\sin (6 t)
\end{aligned}
$$

Ex 2:
$x=(\sin (7 \pi t))^{3}$
$y=(\cos (5 \pi t))^{3}$
Ex 3:
$x=2.3 \cos (10 t)+\cos (23 t)$
$y=2.3 \sin (10 t)-\sin (23 t)$

Ex2. Consider the following PARAMETRIC CURVE:

$$
(x, y)=(t-1,4 t) \quad 0 \leq t \leq 2
$$

四
Write x in terms of y (I.e. eliminate the parameter t)

B] Draw a picture of the PARAMETRIC CURVE and clearly indicate the initial and terminal points as well as the direction of increasing values of " 4 ".
Sof:

Ex 3. Consider the following PARAMETRIC CURVE:

$$
(x, y)=\left(t^{2}, 2 t^{3}\right) \quad 0 \leqslant t \leqslant 1
$$

A
Write x in terms of y (I.e. eliminate the parameter t)

B] Draw a picture of the PARAMETRIC CURVE and clearly indicate the initial and terminal points as well as the direction of increasing values of " t ".
Sof:

* We can express the unit circle

$$
(x, y)=(\cos (t), \sin (t)) \quad 0 \leqslant t \leqslant 2 \pi
$$ using parametric equations!

$$
\cos (t+\pi / 2)=-\sin (t) \quad \sin (t+\pi / 2)=\cos (t)
$$

$$
\sin (-t)=-\sin (t)
$$

$$
\cos (t+\pi)=-\cos (t) \quad \sin (t+\pi)=-\sin (t)
$$

NOTE: Using the parametric representation of the unit circle... We can find parametric equations for circles with other properties!

Ex 4. Find a PARAMETRIZATION of a circle centered at the origin with radius 3 that satisfies the following:

- Counterclockwise orientation with initial point $(3,0)$ sol:
- Clockwise orientation with initial point $(3,0)$
sol:
- Counterclockwise orientation with initial point $(0,3)$ Sof:
- Clockwise orientation with initial point (0,3)

Ex5. Find the PARAMETRIZATION of a circle with center (1,2), radius 5, oriented clockwise, with initial point (-4,2).

Ex6. A fly moves along a circle $(x-1)^{2}+y^{2}=25$
Find a PARAMETRIC CURVE that describes that path of the fly in each of the following cases:

- The fly travels in a clockwise direction starting at $(5,0)$ with $0 \leqslant t \leqslant 2 \pi$ Sol:
- The fly travels halfway around the circle in a counterclockwise direction starting at $(1,5)$ with $0 \leq t \leq \pi$

Exf: Two particles travel in space according the following PARAMETRIC EQUATIONS:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(5 \sin (t), 2 \cos (t)) \quad 0 \leqslant t \leq 2 \pi \\
& \left(x_{2}, y_{2}\right)=(-5+\cos (t), 1+\sin (t))
\end{aligned}
$$

Find all points of intersection of the two paths and then find the location of any COLLISION POINTS (if they exist).
sol:

